

NMOS Evolved - Beyond Routing Control

Jed Deame, CEO, Nextera Video

What is NMOS?

Required Components

- IS-04 (Registration & Discovery)
- IS-05 (Connection Management)
- IS-07 (Event & Tally)
- IS-08 (Audio Mapping)
- IS-09 (System Discovery)

Optional Components

- BCP-002 (Grouping/Naming)
- BCP-006 (NMOS for JPEG-XS)
- BCP-003/IS-10 (Security)

Under Development

- IS-11 (Stream Compatibility)
 - BCP-005-01 (EDID)
- IS-12 (Operational Control)
 - MS-05-01/02/03 Modeling
- Media Node Configuration
- New Codecs
- Why Should I Care?
- How is it Going?
- How Can I Try It?

Outline

What is NMOS?

- NMOS is the <u>Networked Media Open</u> <u>Specification</u>, developed by the Advanced Media Workflow Association (AMWA)
- Delivered in the form of an open specification on the AMWA website
- Enables ST 2110 <u>Controllers and Devices</u> to seamlessly **interoperate** across multiple vendors
- ➤ Brings Plug & Play and Push-Button simplicity to Video over IP Routing

How does NMOS Work?

IS-04/05 System Diagram

- Sources automatically register with RDS
- Control Panel gets list of devices from RDS
- Upon button press, control system commands receiver to join the new multicast stream and leave the previous one

How is NMOS Accessed?

- Through a set of Application Program Interfaces (APIs)
 - In Plain English:
 - http PUT/GET => http://<IP Address>/x-nmos /<API Name>/...
- Examples (Viewable in Web Browser):
 - http://192.168.10.2/x-nmos/node/v1.3/self
 - http://192.168.10.2/x-nmos/query/v1.3/senders
 - http://192.168.10.2/x-nmos/channelmapping/v1.0/map
 - http://192.168.10.2/x-nmos/channelmapping/v1.0/outputs
 - http://192.168.10.2/x-nmos/auth/v1.0/certs

What is a Typical Implementation?

Required Components

EBU Mandate

III	Operational Control					
111.5						
111.2	Connection Management: AMWA IS-05					
111.3	B Device Control: Open Methods and AMWA IS-07					
111.4	Audio Channel Mapping: AMWA IS-08					
111.5	Topology discovery: LLDP					
IV Configuration and Monitoring						
IV.						

Tech 3371

THE TECHNOLOGY PYRAMID FOR MEDIA NODES

MINIMUM USER REQUIREMENTS TO BUILD AND MANAGE AN IP-BASED MEDIA FACILITY USING OPEN STANDARDS & SPECIFICATIONS

Version 2.0

➤ Validated via the "JT-NM Tested" Program

Geneva July 2020

IS-04 (Registration & Discovery)

Consists of 3 API's

(Application Programming Interfaces)

Node API

Registration API

Query API

http://192.168.10.2/x-nmos/query/v1.3/senders

Node [Camera, Monitor] Registry
[PC running RDS SW or built into switch]

• Contains a database of all NMOS devices on the network

IS-05 (Connection Management)

- IS-05 is an API which provides the means to create a connection between Senders and Receivers
- Enables switching through "activations"
- Activations can be immediate, relative, or absolute

- Now
- In 5 seconds
- At 12:00 PM

IS-07 Event & Tally

- "GPIO over IP"
- Tally
- Dynamic Text (UMD)
- Etc.

IS-08 (Audio Mapping)

Provides SDI-router-like capabilities

• Combine individual channels from multiple sources into any output

Audio routing/shuffling facility with 4 APIs:

Inputs Outputs Map I/O

- Multi-vendor demonstration of Audio Mapping
- 3x 16-channel Senders
- 2x 16-channel Receivers

IS-08 Mapping Controls

IS-08 Demo – Audio Remapping (PSHOWCASE)

IS-09 (System Resource)

- Provides a global resource within the ST 2110 Environment
- Located using DNS Service Discovery (DNS-SD)
- Read by Media Nodes on Startup to determine:
 - System ID (assigned randomly at each facility)
 - Protocol (http or https)
 - NMOS API versions supported
 - PTP domain and announce interval
 - RDS Heartbeat Interval
 - Syslog hostname & port
- Implementation Guide
 - https://specs.amwa.tv/info-004/

IS-09 DNS-SD Server

Optional Components

BCP-002-01 (Grouping)

- Best practices for grouping NMOS resources
- Uses the 'tags' resource in IS-04 in order to achieve 'natural grouping' of Senders and Receivers
- Ex) Video, Audio, and ANC from a specific device
- Uses "grouphint" tag & roles

Grouping Example

Playout server sender with 1 video & 2 audio flows

Video 1 group:

"Playout

Master"

Audio 1 group:
"Playout
Master"

Audio 2 group: "Playout Master"

Video 1 role: "Primary"

Audio 1 role: "Audio 1 – 2ch"

Audio 2 role: "Audio 2 – 5.1ch"

BCP-002-02 (Asset Distinguishing Information)

 Node and <u>Device</u> resources MUST include exactly one value for each of the following tags, and the combination MUST be unique:

Manufacturer (e.g.: Vendor A)
Product Name (e.g.: Model A)
Instance Identifier (e.g.: 12345ABC)

 <u>Device</u> resources MUST also include at least one value for the following tag which MUST reflect the current state:

• Function (e.g.: Decoder)

BCP-006 (NMOS for JPEG-XS)

- Enables ProAV applications to use NMOS
 - To be supplemented by VSF TR-10-8 (NMOS for IPMX)
- Refers to VSF TR-08 (Transport of JPEG-XS Video in ST 2110-22)
- Leverages IS-04 & IS-05
- Uses BCP-002-01 Natural Grouping
- Uses media_type video/jxsv
- Specifies updates to Session Description Protocol (SDP) file

NMOS Security

Goals:

Confidentiality - Data passing between client and the APIs is unreadable to third parties.

Identification - The client can check whether the API it is interacting with is owned by a trusted party.

Integrity - It must be clear if data travelling to or from the API been tampered with.

Authentication - The client can check if packets actually came from the API it is interacting with, and vice versa.

Control Security

BCP-003-01

Uses Transport Layer Security (TLS) to encrypt communications between NMOS controllers & devices (https)

BCP-003-02

Client authorization and user management in NMOS systems

BCP-003-03

Certificate Provisioning using Enrollment over Secure Transport (EST)

IS-10 (Authorization)

- Accompanies the <u>BCP-003-02</u> specification to restrict what users are authorized to change in an NMOS system
- Based on JSON Web Tokens and OAuth 2.0

Public Key Infrastructure (PKI)

 A set of roles, policies, and procedures needed to create, manage, distribute, use, store & revoke digital certificates and manage public-key encryption

NMOS Security Example

Security Technologies - Acronyms

PKI

(Key Exchange)

HTTPS

(http over TLS)

Connection Security (Encrypted Control Interface)

REST

(HTTPS PUT & GET)

JSON

(Key-Value Parameter sets)

OAuth 2.0

(Open Authorization)

Clients Authenticate with Authentication Server

JWT

(JSON Web Token)

Client Authorization (issue access tokens) – RSA with SHA-256

NMOS Cipher Suite

- TLS ECDHE ECDSA WITH AES 128 GCM SHA256
- TLS ECDHE ECDSA WITH AES 256 GCM SHA384
- TLS ECDHE ECDSA WITH AES 128 CBC SHA256
- TLS ECDHE ECDSA WITH AES 256 CBC SHA384
- TLS ECDHE RSA WITH AES 128 GCM SHA256
- TLS ECDHE RSA WITH AES 256 GCM SHA384
- TLS DHE RSA WITH AES 128 GCM SHA256
- TLS DHE RSA WITH AES 256 GCM SHA384
- TLS ECDHE RSA WITH AES 128 CBC SHA256
- TLS ECDHE RSA WITH AES 256 CBC SHA384
- TLS DHE RSA WITH AES 128 CBC SHA256
- TLS DHE RSA WITH AES 256 CBC SHA256
- TLS ECDHE ECDSA WITH AES 128 CCM 8

Johnny Quest Decoder Ring:

TLS = Transport Layer Security

ECDHE = Elliptic Curve Diffie-Hellman Ephemeral KE

ECDSA = Elliptic Curve Digital Signature Algorithm

AES = Advanced Encryption Standard (#bits)

GCM = Galois/Counter Mode

CBC = Cipher Block Chaining (XOR)

SHA = Secure Hash Algorithm (#bits)

CCM = Counter with CBC-MAC (Cyber Block

Chaining Message Authentication Code)

←====== Minimum Requirement

The Evolution of NMOS (Under Development)

IS-11 (Stream Compatibility Management)

- Formerly EDID (Extended Display Identification Data)
- State of a Sender can be tuned to be compatible with a corresponding Receiver or many compatible Receivers
- Example:
 - Sender & Receiver support 2160p59 or 1080p59
 - Sender set to 2160p59
 - Second receiver subscribes but only supports 1080p59
 - Sender TX Format is adjusted to 1080p59
- See BCP-004-01 Receiver Capabilities
 - Senders & Receivers advertise their constraints
 - Video Format: Frame Size, Frame Rate, Color Sampling, SDR/HDR, etc.
 - Audio Format: # Channels, Packet Time, Sample Rate, etc.
- See BCP-005-01 NMOS EDID to Receiver Capabilities Mapping

IS-12 (Operational Control)

- Goal is to create a Universal Control Protocol
- Exposes a common, but vendor-extensible API
- Replacement for:
 - SNMP Too difficult to add standard MIBs
 - OpenConfig Scope too narrow
 - Ember+ Great approach, but not 100% open
- Device Model provides a structured view of the controls and statuses of the parameters inside the device
- Uses WebSockets & JSON
- References MS-005-01/02/03 Frameworks/Block Specs
- Next steps are to publish standardized blocks and functions
 - Can be customized, would require control system driver

Media Node Configuration

- Ability to download and archive the complete configuration of a device (and a system)
- Goal is to have Readable/Editable configurations
- Crucial with thousands of devices
- Functionality likely will be added to MS-05

New Codecs & Transports

The following activity groups are just beginning:

- H.264 (AVC) BCP-006-02 draft on GitHub
- H.265 (HEVC) BCP-006-03 draft on GitHub
- NDI
- MPEG-TS

Why Should I Care?

- During system provisioning, manually entering a sea of cryptic configuration options such as IP Addresses, Ports, PTP Parameters, etc. is time consuming, costly, and error prone
- Plug and Play is Fun!

- Most all new facility build tenders are specifying NMOS
- Most Control System Providers have fully embraced NMOS
 - Need to encourage the 1 or 2 who still have not...

How is it going?

- Early facilities adopting NMOS control had some issues (teething pains)
 - Not all devices supported NMOS
 - Some new NMOS devices didn't get JT-NM testing (Covid)
 - Controller specs not clear and Interop testing for controllers didn't exist
- Mitigation
 - Most all new ST 2110 devices are support NMOS
 - JT-NM Testing is back!
 - Face2Face Interop August 19-23 @ Riedel (Germany), very promising
 - AMWA INFO-005 Implementation Guide for NMOS Controllers
 - Automated self-test suites NOW AVAILABLE for Devices & Controllers

The following test suites are currently supported.							
Test Suite ID	Suite	Node	Registry	Controller	Other/Notes		
IS- 04-01	IS-04 Node API	х					
IS- 04-02	IS-04 Registry APIs		x				
IS- 04- 03	IS-04 Node API (Peer to Peer)	x					
IS- 04- 04	IS-04 Controller			х	See Testing Controllers		
IS- 05-01	IS-05 Connection Management API	х					
IS- 05-02	IS-05 Interaction with IS-04	х					
IS- 05-03	IS-05 Controller			x	See Testing Controllers		
IS- 06-01	IS-06 Network Control API				Network Controller		
IS- 07-01	IS-07 Event & Tally API	х					
IS- 07-02	IS-07 Interaction with IS-04 and IS-05	х					
IS- 08-01	IS-08 Channel Mapping API	х					
IS- 08-02	IS-08 Interaction with IS-04	х					
IS- 09-01	IS-09 System API		(X)		System Parameters Server		
IS- 09-02	IS-09 System API Discovery	х					
IS-10- 01	IS-10 Authorization API				Authorization Server		
	BCP-002-01 Natural Grouping	х			Included in IS-04 Node API suite		
BCP- 003- 01	BCP-003-01 Secure Communication	x	x		See Testing TLS		
	BCP-003-02 Authorization	х	x		See Testing Authorization		
	BCP-004-01 Receiver Capabilities	x			Included in IS-04 Node API and IS-05 Interaction with IS-04 suites		

NMOS Testing

Easy-NMOS Docker Compose Solution

This starter kit allows the user to launch a simple NMOS setup with minimal installation steps. It is composed of three Docker containers:

- an NMOS Registry (from nmos-cpp)
- a virtual NMOS Node (from nmos-cpp) which should automatically register
- the AMWA NMOS Testing Tool

https://github.com/rhastie/easy-nmos

How Can I try NMOS? - Riedel NMOS Explorer

NMOS Control GUI (Matrox ConductIP) (IP SHOWCASE)

NMOS Control GUI (Matrox ConductIP) (IP SHOWCASE)

Take-aways

- Å
- NMOS IS-04 and 05 are solid, stable, and mature & offered in most all new ST 2110 products
- NMOS Control Systems are greatly improved thanks to spec clarifications and interop testing
- Features like IS-08 (Audio Mapping), IS-09 (System Discovery), and BCP-002 (Grouping/Naming) take NMOS to a new level, far surpassing the level of control provided in SDI
- BCP-003 (Security) adds a layer of security that has been sorely needed in control systems for quite some time
- NMOS is being extended to go far beyond that with stream mapping, and ultimately full device configuration.

Any Questions?

Jed Deame marketing@nexteravideo.com

Please see our Live Demo in Central Hall 2630 (South of GV)

