
1

DTAPI
Overview and Data Formats

REFERENCE
Feb 2021

DTAPI Manual
Overview and data formats

2

Table of Contents

1. General Description 3
1.1. What is DTAPI? .. 3
1.2. Documentation Overview 3
1.3. DTAPI Object Model ... 3
1.4. List of Abbreviations and Glossary of Terms 4
1.5. References ... 5

2. Using DTAPI in your Project 6
2.1. DTAPI on the Windows Platform 6
2.2. Using the Static Link Library 6
2.3. Using the .NET Assembly 7
2.4. DTAPI on the Linux Platform 7
3. DTAPI Basics ... 8
3.1. Attaching to a Device ... 8
3.2. Attaching to a Channel 9
3.3. Initialising a Channel ... 9
3.4. Receiving Data ... 9
3.5. Transmitting Data .. 10
3.6. Example Code for a Simple Stream Player 11

4. Capabilities and I/O Configuration 13
4.1. Introduction ... 13
4.2. Capabilities ... 13

4.2.1. I/O Capability Groups 14
4.2.2. Standard Capability Groups 14

4.3. I/O Configuration .. 15
4.3.1. SetIoConfig and GetIoConfig.......................... 15
4.3.2. Relation to Capabilities 15
4.3.3. SetIoConfig Variants....................................... 15

5. DTAPI Concepts .. 17
5.1. Getting Statistics ... 17
5.2. Transmit on Timestamp 17
5.3. SDI Genlock Support .. 18

5.4. Vital Product Data (VPD) 19
6. Multi-PLP Extensions 20
6.1. Licensing .. 20
6.2. Multi-PLP Object Model 20
6.3. Attaching to a Multi-PLP Modulator 21
6.4. Virtual Channels ... 21
6.5. Streaming MPLP Data 21
6.6. Complete Example ... 23
7. Advanced Demodulator API 30
7.1. Introduction .. 30
7.2. Streaming Model .. 30
7.3. Licensing .. 30
7.4. Advanced Demodulator Object Model 31
7.5. Attaching to an Advanced Demodulator 31
7.6. Virtual Input Channel – User-Supplied I/Q Samples
 .. 31
7.7. Receiving PLP Data and Constellation points 32
7.8. Retrieving Statistics .. 34
7.9. Set Generic Demodulation Parameters 34
8. SDI over IP .. 35
8.1. Overview ... 35
8.2. Using SDI-over-IP with DTAPI 35
8.3. SDI Transmit .. 36
8.4. SDI Receive .. 37
9. Definition of data formats 38
9.1. Generic Stream Encapsulation (GSE) Packet 38
9.2. L.3 Baseband Frame... 39
9.3. SDI – 10-bit Format .. 42
9.4. SDI – 8-bit Format .. 43
9.5. SDI – Huffman-Compressed 44
9.6. Transparent Mode .. 46
9.7. Transmit on Timestamp 47

Copyright © 2021 by DekTec Digital Video B.V.

DekTec Digital Video B.V. reserves the right to change products or specifications without notice.
Information furnished in this document is believed to be accurate and reliable, but DekTec assumes

no responsibility for any errors that may appear in this material.

DTAPI Manual
Overview and data formats

3

1. General Description

1.1. What is DTAPI?

DTAPI is an acronym for DekTec Application Programming Interface, an API for controlling DekTec
PC add-on hardware (PCIe cards and USB devices) and reading and writing data to it. DTAPI is part
of the DekTec SDK, which also contains device drivers, documentation, example code, etc.

DTAPI enables application programs to access the functions of DekTec devices at a higher level of
abstraction than would be possible using direct device-driver calls. Nonetheless, it allows efficient
access to nearly all hardware features.

From a technical point of view, DTAPI is a C++ library with an object-oriented interface that links to
a user application. The DTAPI library uses three device drivers (Dta, Dtu, DtaNw,) for accessing the
hardware: Dta handles PCI and PCI express cards, Dtu handles USB-2 and USB-3 devices and DtaNw
is the network driver for IP-enabled devices. An auxiliary service (on Windows) or daemon (on Linux)
is running to provide services that should run continuously or that span multiple applications. Collec-
tively, DTAPI, the device drivers, the DTAPI service and the documentation are called the DekTec SDK.
It’s available as “Windows SDK” for Windows XP onwards and as “Linux SDK” for Linux 2.6 onwards.

From a programmer’s point of view, DTAPI is composed of a header file (DTAPI.h), to be included in
the application’s source code, and a library file, to be linked to the application’s executable. DTAPI is
also available as .NET assembly.

1.2. Documentation Overview

The table below shows the documents describing DTAPI.

Document Description

DTAPI Reference – Overview and Data Formats This document. Overview of DTAPI and definition
of data formats.

DTAPI Reference – Core Classes Reference for the core classes and methods in
DTAPI, mainly the device and channel classes.

DTAPI Reference – Advanced Demodulator API Reference for the advanced demodulator classes
and structures in DTAPI.

DTAPI Reference – DekTec Matrix API Reference for real-time processing of uncom-
pressed audio and video with the DekTec Matrix
API (part of DTAPI).

DTAPI Reference – Encoder Control Reference of the DTAPI classes for controlling au-
dio- and video encoding hardware.

DTAPI Reference – Multi-PLP Extensions Reference for the multi-PLP ATSC 3.0, DVB-C2,
DVB-T2 and ISDB-Tmm modulator classes in
DTAPI.

DekTec SDK – Revision History List of changes for each release of the Win-
dows/Linux SDK since the May2012 SDK release.

1.3. DTAPI Object Model

DTAPI consists of a collection of C++ classes. Some classes represent hardware functions, others
represent control parameters. The hardware is controlled and managed by invoking methods on
DTAPI objects. The core classes of DTAPI are DtDevice, DtInpChannel and DtOutpChannel.

DTAPI Manual
Overview and data formats

4

A DekTec device is represented by a DtDevice object. An application that wants to interact with a
device first ‘attaches’ a DtDevice object to the hardware. To build an inventory of DekTec devices in
the system, the DtDevice class is supplemented by a global function DtapiDeviceScan.

Figure 1 illustrates DTAPI in action. The application interacts with DTAPI objects, which in turn com-
municate with the hardware through a device driver.

Dta1xx WDM Device DriverDtu2xx WDM Device Driver

Application

DtDevice

TsOutpChannel
TsOutpChannel

TsInpChannel
TsInpChannel

Streaming

INOUTVPD

DtDevice

TsOutpChannel
TsOutpChannel

TsInpChannel
TsInpChannel

Streaming

INOUTVPD

Figure 1. Example of DTAPI objects representing two devices.

The I/O ports on a device are represented by channel objects. Two channel classes are defined:
DtInpChannel for representing an input port and DtOutpChannel for an output port. A network (IP)
port is a special case: a channel object is instantiated for each logical stream. An application attaches
a channel object to an I/O port by specifying a DtDevice object and a port number. The core methods
of the channel classes are DtInpChannel::Read for reading data from an input port and
DtOutpChannel::Write for streaming data to an output port.

1.4. List of Abbreviations and Glossary of Terms

bit string – Sequence of bits. Bit strings are written as a string of 1s and 0s within single quote marks,
e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and have no significance.

bslbf – Bit string, left bit first. Used in bit stream definitions. “Left” refers to the order in which bit strings
are written in this document. “First” refers to the first bit transmitted or received. For example, in ‘1000’
the first bit transmitted or received is a ‘1’.

channel object – Instance of a C++ class that represents a physical input or output stream. A user
application streams data in or out of an I/O port by invoking methods on the channel object.

device object – Instance of a C++ class that represents a DekTec device.

DTA-xxx card – Any DekTec PCI or PCI Express card in the DTA series.

Dta – Name of the device driver for DekTec PCI or PCI Express cards. This device driver is generic: a
single device driver is used for all PCI devices (instead of using one device driver for each device type).

DTAPI – DekTec Application Programming Interface.

DTAPI Manual
Overview and data formats

5

Dtu – Name of the device driver for DekTec USB devices. This device driver is generic: a single device
driver is used for all USB devices (instead of using one device driver for each device type).

uimsbf – Unsigned integer, most significant bit first.

VPD – Vital Product Data. Information stored in a PCI device to uniquely identify the hardware and,
potentially, software elements of the device. DekTec devices store VPD in on-board serial EEPROMs.
DTAPI supports methods to read and write VPD items.

1.5. References

- ISO/IEC 13818-1, Information technology – Generic coding of moving pictures and associated au-
dio information: Systems, also known as “MPEG-2 Systems” – Specification of the structure of a
MPEG-2 Transport Stream.

- Recommendation ITU-R BT.656-4. Interfaces for digital component video signals in 525-line and
625-line television systems operating at the 4:2:2 level of recommendation ITU-R BT.601 (Part A).

- ETSI EN 302 769, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation transmission system for cable systems (DVB-C2).

- ETSI EN 302 755, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation digital terrestrial television broadcasting system (DVB-T2).

- ETSI EN 102 773, Digital Video Broadcasting (DVB); Modulator Interface (T2-MI) for a second gen-
eration digital terrestrial television broadcasting system (DVB-T2).

DTAPI Manual
Overview and data formats

6

2. Using DTAPI in your Project

This section describes how to use DTAPI on Windows (§2.1) and on Linux (§2.4).

2.1. DTAPI on the Windows Platform

DTAPI for Windows is available as a static link library and as .NET 4.0 assembly. All DTAPI declara-
tions and definitions are contained in a single C++ header file: DTAPI.h. Each module that uses
DTAPI functionality has to include this file.

2.2. Using the Static Link Library

The static link libraries are available for VC8 (Visual Studio 2005), VC9 (Visual Studio 2008), VC10
(Visual Studio 2010), VC11 (Visual Studio 2012), VC12 (Visual Studio 2013) and VC14 (Visual Studio
2015). For each compiler platform, eight versions of the library are available.

Library File #bits Run-Time Library Configuration

DTAPIMD.lib 32 multi-threaded DLL (/MD) release

DTAPIMDd.lib 32 multi-threaded DLL (/MD) debug

DTAPIMT.lib 32 multi-threaded (/MT) release

DTAPIMTd.lib 32 multi-threaded (/MT) debug

DTAPI64MD.lib 64 multi-threaded DLL (/MD) release

DTAPI64MDd.lib 64 multi-threaded DLL (/MD) debug

DTAPI64MT.lib 64 multi-threaded (/MT) release

DTAPI64MTd.lib 64 multi-threaded (/MT) debug

The correct version of the DTAPI library is automatically linked to the application. This is accomplished
with pragma directives in DTAPI.h, e.g. “#pragma comment(lib, "DTAPI64MDd.lib")”, embedded
in #ifdef statements.

Automatic linking can be disabled by defining _DTAPI_DISABLE_AUTO_LINK in your source code with
a #define before including DTAPI.h. Alternatively, you can define this constant in the Configuration
Properties in the C++, Preprocessor Definitions section.

So, to use the static link library of the DTAPI follow these steps:

1. Copy DTAPI.h and the right version(s) of DTAPIxxx.lib to your project or to a standard location
visible to VC++.

2. Add “#include “DTAPI.h” to each file that uses DTAPI constants and/or functions.

3. Compile your application using compiler settings that match those of the lib file.

Instead of the manual copy it also possible to use a search path to look for the DTAPI.h and
DTAPIXX.lib files in the WinSDK installation directory, which is typically:

 C:\Program Files\DekTec\SDKs\WinSDK\DTAPI

DTAPI Manual
Overview and data formats

7

For Visual Studio 2010 (VC10) and later version the WinSDK installer adds two convenience macros1:

• $(DtapiIncludePath), pointing to <installdir>/DTAPI/Include

• $(DtapiLibraryPath), pointing to <installdir>/DTAPI/Lib

You can use these convenience macros to update the search path in your project settings:

• Add $(DtapiIncludePath) to the “Additional Include Directories” in the “C/C++ General”
settings section.

• Add $(DtapiLibraryPath)\VC10 to the “Additional Library Directories” in the “Linker Gen-
eral” settings section.

NOTE: add \VC10 to the end of $(DtapiLibraryPath) for VS.2010 projects, \VC11 for VS.2012 pro-
jects, etc., to link with the correct version of the DTAPI library.

For earlier versions of Visual Studio, e.g. VS.2008, there are no such convenience macros and you
should manually add the DTAPI include and lib paths to the global Visual Studio include and library
search paths.

2.3. Using the .NET Assembly

DTAPINET.dll and DTAPINET64.dll are .NET 4.0 compatible assemblies of DTAPI. To use it you
should perform the following steps:

1. Make sure the .NET 4.0 SDK has been installed on your system.

2. Copy DTAPINET.dll to your project or to a standard location visible to VC# (or other .NET
IDE).

3. Add a reference to the DTAPINET.dll assembly to your project.

4. Add a “#using DTAPINET” statement to the beginning of each source file that uses the classes,
methods, and or constants exported by the DTAPINET assembly.

2.4. DTAPI on the Linux Platform

Using DTAPI in a Linux application is straightforward:

1. Make sure that DTAPI.h and DTAPI.o are located in a path reachable from your project.

2. Add “#include DTAPI.h” to each file using DTAPI.

3. Link the DTAPI.o library file to your application.

4. DTAPI requires the pthread library, so link this library to your application too.

The DTAPI library file is available for different GCC versions. Please refer to the
…/LinuxSDK/DTAPI/Bin/ directory.

1 For a multi user PC development environment each user should initially do an installation of the WinSDK to make sure

that the convenience macros are installed for each user.

DTAPI Manual
Overview and data formats

8

3. DTAPI Basics

3.1. Attaching to a Device

Programs that use DTAPI first must instantiate a DtDevice object and “attach” it to a hardware device.
This can be accomplished in several ways.

DtDevice::AttachToType is convenient when the DekTec device type number is known, and the sys-
tem contains a single adapter of the given type.

DtDevice Dvc;

if (Dvc.AttachToType(2145) != DTAPI_OK)

 // No DTA-2145 in the system ...

Figure 2. Attaching a DtDevice object to the hardware based on type number.

DtDevice::AttachToSerial can be used if the serial number of the device is known.

DtDevice Dvc;

if (Dvc.AttachToSerial(2145000123) != DTAPI_OK)

 // No card with serial# 2145000123

Figure 3. Attaching a DtDevice object to the hardware based on serial number.

DtDevice::AttachToSlot can be used if the physical location of a PCI or PCI Express card in the
system is known.

DtDevice Dvc;

if (Dvc.AttachToSlot(1, 3) != DTAPI_OK)

 // No card in slot 3 on PCI bus 1 ...

Figure 4. Attaching a DtDevice object to the hardware based on PCI bus and slot number.

For DTEs (e.g. DTE-3100) in DTAPI mode, DtDevice::AttachToIpAddr can be used:

DtDevice Dvc;

unsigned char IpAddr[4] = { 192, 168, 23, 114 };

if (Dvc.AttachToIpAddr(IpAddr) != DTAPI_OK)

 // No DTE found at 192.168.23.114

Figure 5. Attaching a DtDevice object to the hardware based on IP address.

A more sophisticated application creates an inventory of DekTec devices, with global function
DtapiHwFuncScan or DtapiDeviceScan, and lets the user configure which device is to be used.

DtHwFuncDesc HwFuncs[10];

int f, NumberOfHwFuncs;

::DtapiHwFuncScan(10, NumberOfHwFuncs, HwFuncs);

for (f=0; f<NumberOfHwFuncs; f++)

 if (HwFuncs[f].m_ChanType & DTAPI_CHAN_OUTPUT)

 break;

if (f == NumberOfHwFuncs) { // No output card }

DtDevice Dvc;

Dvc.AttachToSerial(HwFuncs[f].m_DvcDesc.m_Serial);

Figure 6. Attaching to the first device with an output port.

After all operations have been completed, the DtDevice object may be detached from the hardware
with method Detach.

DTAPI Manual
Overview and data formats

9

3.2. Attaching to a Channel

Before you can stream data into or out of a DekTec device, two objects must have been instantiated
and attached to the hardware:
• A DtDevice object (§3.1);

• A channel object: DtInpChannel for streaming data from an input port into your application,
or DtOutpChannel for streaming data to an output port.

The channel object is attached to the hardware with the channel’s AttachToPort member function.
The first parameter of this function is a pointer to the DtDevice object that hosts the channel. The
second parameter identifies the port number.

DtDevice Dvc;

// Code to attach to the device hardware goes here

DtOutpChannel Outp;

if (Outp.AttachToPort(&Dvc, 1) != DTAPI_OK)

 // Error-handling code

DtInpChannel Inp;

if (Inp.AttachToPort(&Dvc, 2) != DTAPI_OK)

 // Error-handling code

Figure 7. Attaching a DtOutpChannel and a DtInpChannel object to the hardware.

Just like device objects, DtOutpChannel and DtInpChannel objects should be detached from the hard-
ware after all operations on the channel have been completed.

3.3. Initialising a Channel

After attaching to the hardware, and before streaming can commence, the channel must be initialized.

Port type Channel object Initialization

DVB-ASI input DtInpChannel SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

DVB-ASI output DtOutpChannel SetTsRateBps sets the output bit rate.
SetTxMode sets the packet size and burst- or continuous
mode.

IP input DtInpChannel SetIpPars sets the IP reception parameters, primarily the
IP source address.
SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

IP output DtOutpChannel SetIpPars sets the IP transmission parameters, primarily
the IP destination address.
SetTsRateBps sets the output bit rate.
SetTxMode sets the packet size and burst- or continuous
mode.

3.4. Receiving Data

This section considers the actual reception of data (usually a Transport Stream) from an external source
to your application. The core of an elementary reception program is shown in Figure 8. This code
assumes the following:

DTAPI Manual
Overview and data formats

10

• Device object Dvc and channel object Inp have been attached to the hardware.

• The receive FIFO is empty and receive mode has been initialized.

• ProcessData(DataBuffer, NumBytes) is the function that processes the data.

• StopCondition() is a user-supplied function to break out of the reception loop.

// PRE-CONDITION: Dvc and Inp have been attached to the hardware

char DataBuffer[BUFSIZE];

// Signal the hardware to start receiving data into the receive FIFO

Inp.SetRxControl(DTAPI_RXCTRL_RCV);

// Main loop

while (!StopCondition())

{

 Inp.Read(DataBuffer, BUFSIZE);

 ProcessData(DataBuffer, BUFSIZE);

}

Figure 8. Minimal program for receiving data from an external data source.

The code is straightforward. First receive mode is set to ‘Receive’ (DTAPI_RXCTRL_RCV), which instructs
the hardware to start storing data in the receive FIFO. In the main loop, Inp.Read sleeps until BUFSIZE
bytes are received. The main loop alternates between reading data and processing the data, until the
stop condition becomes true.

The following factors should be considered to achieve optimal results:

- The buffer size (constant BUFSIZE) should not be chosen too small. Every data transfer from the
receive FIFO to the buffer in host memory incurs non-negligible overhead for setting up a DMA
transfer.
A reasonable minimum buffer/transfer size is 4096 bytes. No maximum size exists; the buffer size
may very well be a few megabytes.

- The number of bytes returned by method Read always is a multiple of 4. It is not guaranteed that
the data aligns to Transport-Packet boundaries, even if the buffer size is a multiple of the packet
size. The processing software should always start with a synchronization stage.

- If using SDI, the ReadFrame function can be used instead of the Read function to read the complete
SDI frame at ones. The BUFSIZE must be the size of a complete SDI frame.

3.5. Transmitting Data

Transmitting data to an output is somewhat more involved than receiving data. The core of a minimal
program that transmits data is shown in Figure 9. The code assumes the following:

- Device object Dvc and channel object Outp have been attached to the hardware.

- The transmission parameters have been initialized.

- GetData(DataBuffer, NumBytes) is the function that generates data bytes to be transmitted.

DTAPI Manual
Overview and data formats

11

The first part of the code builds an initial load in the transmit FIFO before actual transmission begins.
Hereto transmission control is set to HOLD, which enables DMA to the transmit FIFO on the device but
keeps transmission disabled.

// PRE-CONDITION: Dvc and Outp have been attached to the hardware

// Transmission parameters have been initialized

// Build initial load in transmit FIFO

Outp.SetTxControl(DTAPI_TXCTRL_HOLD); // Start in HOLD mode

char DataBuffer[BUFSIZE];

for (int Load=0; Load<INITIAL_LOAD; Load+=BUFSIZE)

{

 GetData(DataBuffer, BUFSIZE);

 Outp.Write(DataBuffer, BUFSIZE);

}

// Go to SEND mode: this starts the transmission of data

Outp.SetTxControl(DTAPI_TXCTRL_SEND);

// Main loop

while (!StopCondition())

{

 Outp.Write(DataBuffer, BUFSIZE);

 GetData(DataBuffer, BUFSIZE);

}

Figure 9. Minimal program to transmit data.

When the transmit FIFO contains its initial load, actual transmission is started by setting transmission
control to SEND. The main loop then supplies additional data to the transmit FIFO.

The following factors should be considered to achieve optimal results:

- The buffer size (constant BUFSIZE) should not be chosen too small. Every data transfer to the trans-
mit FIFO incurs overhead for setting up a DMA transfer.

- The initial load written to the transmit FIFO (INITIAL_LOAD) should not be too small either, to
prevent an early underflow of the transmit FIFO in the main loop. A value close to the maximum
FIFO size is recommended.
The initial load cannot be larger than the size of the transmit FIFO: this would cause an application
“stall”, because Outp.Write will sleep forever.

3.6. Example Code for a Simple Stream Player

Figure 10 shows the code of a simple but fully functional command-line stream player that is capable
of transmitting a TS file to DVB-ASI output port #1 of a DTA-2145. The filename and bit rate at which
to play out the file can be specified as command-line arguments.

The example exploits good-old “stdio” functions for reading file data. By using a relatively large buffer,
performance is more than adequate.

Obviously, this example is just a first step towards a production-quality streamer application. With
respect to DTAPI, one obvious improvement would be to check the return code for every DTAPI call
and add the corresponding error-handling code.

DTAPI Manual
Overview and data formats

12

// Command-line program TsOut to transmit a TS file out of a DTA-2145

#define BUFSIZE 0x10000 // 64kB buffer size

#define INITIAL_LOAD (7*1024*1024) // 7MB initial load

#include “DTAPI.h”

#include <stdio.h>

int main(int argc, char* argv[])

{

 if (argc != 3) {

 printf(“Usage: TsOut bitrate tsfile\nQuitting...\n”);

 return -1;

 }

 FILE* fp = fopen(argv[2], “rb”);

 if (fp == NULL) {

 printf(“Can’t open ‘%s’ for read\nQuitting...\n”, argv[2]);

 return -2;

 }

 // Attach device and output channel objects to hardware

 DtDevice Dvc;

 if (Dvc.AttachToType(2145) != DTAPI_OK) {

 printf(“No DTA-2145 in system. Quitting...\n”);

 return -3;

 }

 DtOutpChannel TsOut;

 if (TsOut.AttachToPort(&Dvc, 1) != DTAPI_OK) {

 printf(“Can’t attach output channel.\nQuitting...\n”);

 return -4;

 }

 // Initialise bit rate and packet mode

 TsOut.SetTsRateBps(atoi(argv[1]));

 TsOut.SetTxMode(DTAPI_TXMODE_188, DTAPI_TXSTUFF_MODE_ON);

 // Build initial load in Transmit FIFO

 TsOut.SetTxControl(DTAPI_TXCTRL_HOLD);

 char Buf[BUFSIZE];

 int Load = 0;

 int NumBytes = fread(Buf, 1, BUFSIZE, fp);

 while (Load<INITIAL_LOAD && NumBytes!=0) {

 TsOut.Write(Buf, NumBytes);

 Load += NumBytes;

 NumBytes = fread(Buf, 1, BUFSIZE, fp);

 }

 // Start transmission

 TsOut.SetTxControl(DTAPI_TXCTRL_SEND);

 // Main loop

 while (NumBytes != 0) {

 TsOut.Write(Buf, NumBytes);

 NumBytes = fread(Buf, 1, BUFSIZE, fp);

 }

 return 0;

}

Figure 10. Complete command-line application to stream a file with the DTA-2145.

DTAPI Manual
Overview and data formats

13

4. Capabilities and I/O Configuration

DTAPI supports mechanisms to discover the capabilities of DekTec I/O adapters programmatically
and configure the hardware dynamically.

4.1. Introduction

A DTAPI capability is a constant that identifies a characteristic or feature of a physical port. For exam-
ple, DTAP_CAP_ASI indicates that a port supports ASI.

• DTAP_CAP_ASI doesn’t say whether ASI reception and/or ASI transmission are supported, other capabilities are
used for that.

The global DTAPI function ::DtapiHwFuncScan scans the hardware and creates a hardware function
descriptor (DtHwFuncDesc) for each port. Capabilities are encoded in member m_Flags of data type
DtCaps. Capabilities can be OR-ed together.

Use the following code snippet to test for a certain capability:

 if ((HwFuncDesc.m_Flags & DTAPI_CAP_ASI) != 0)

 {

 // Port supports ASI

 }

Figure 11. Code to test whether a port has capability DTAPI_CAP_ASI.

I/O configuration is the process to dynamically configure I/O ports from software. You can use the
SetIoConfig method to set the I/O configuration of a port, and GetIoConfig to read it back.

4.2. Capabilities

Capabilities are organized in groups, capabilities and sub-capabilities.

Capability Group A set of capabilities applying to comparable characteristics.
For example, capabilities in group IOSTD all apply to the I/O stand-
ards supported by a physical port.

Capability A constant that identifies a characteristic of a port.
For example, DTAPI_CAP_HDSDI, a member of group IOSTD, indicates
that the port supports HD-SDI.

Sub-Capability A constant that identifies a sub-characteristic of a port.
For example, sub-capabilities of DTAPI_CAP_HDSDI include
DTAPI_CAP_1080I50, DTAPI_CAP_1080I59_94, etc.

The DekTec SDK contains the following documentation on capabilities.

CapList.xlsx A spreadsheet that lists the capabilities, sub-capabilities and attributes
supported by each DekTec I/O adapter.

DTAPI.h This header file contains a complete list of all available capabilities in
the form of DTAPI_CAP_XXX definitions.

DTAPI Manual
Overview and data formats

14

There are two main categories of capabilities: I/O capabilities and standard capabilities.

I/O Capability Capability that is linked to I/O configuration: If an I/O capability is
supported, SetIoConfig can be used to enable the port feature.

Standard Capability These capabilities indicate whether a certain function is sup-ported by
the port and are unrelated to I/O configuration.

4.2.1. I/O Capability Groups

I/O capabilities describe features of physical I/O ports. The main I/O capability groups are listed in
the table below. Capabilities in group BOOLIO are present, or not. Capabilities in the other I/O capa-
bility groups are mutually exclusive: only one of them can be active at a time.

Group Description

BOOLIO Boolean I/O capabilities that, if present, indicate that a feature is sup-
ported. Capabilities in this group include FAILSAFE, FRACMODE, GENLOCKED,
GENREF and SWS2APSK.

IODIR The direction of the signal flow: INPUT, OUTPUT or DISABLED. The sub capa-
bilities in this group indicate how a physical port is connected to the input
or output channel. This encodes features like double buffering.

IOSTD The I/O standard used on this port. Capabilities in this group include:
3GSDI, ASI, DEMOD, GPSTIME, HDSDI, IP, MOD, PHASENOISE, SDI and SPI.

PWRMODE High-quality modulation (MODHQ) or low-power mode (LOWPWR).

RFCLKSEL Modulator RF clock - Selection of reference source: internal (RFXCLKINT) or
external (RFXCLKEXT).

TSRATESEL Capabilities in this group selects between ways to generate the transport-
stream rate: EXTTSRATE, EXTRATIO, INTTSRATE or LOCK2INP.

For a complete list of I/O capabilities, please refer to CapList.xlsx.

4.2.2. Standard Capability Groups

The main standard capability groups are listed in the table below.

Group Description

DEMODPROPS General demodulator properties: ANTPWR (antenna power), LNB and RX_ADV
(advanced demodulation).

FREQBAND Frequency band supported: LBAND, VHF, UHF.

IOPROPS Miscellaneous capabilities that do not fit elsewhere, e.g. TRPMODE (transpar-
ent mode)

MODSTD Modulation standards, all starting with TX_: TX_ATSC, TX_DVBT2, etc.

MODPROPS Other capabilities related to modulation, e.g. CM (channel simulation).

RXSTD Receiver standards, all starting with RX_: RX_ATSC, RX_DVBT2, etc.

For a complete list of standard capabilities, please refer to CapList.xlsx.

DTAPI Manual
Overview and data formats

15

4.3. I/O Configuration

4.3.1. SetIoConfig and GetIoConfig

Use the SetIoConfig to set the I/O configuration of a port, and GetIoConfig to read it back.

On Windows, I/O configuration settings are persisted in the registry. After a power down and a reboot,
the I/O configurations will be automatically restored to the last-applied settings.

On Linux, no such mechanism exists and the application itself is responsible for configuring the ports.

Example

On many DekTec adapters, ports can be configured in ASI or in SDI mode. The code below configures
a port in ASI mode:

 if ((HwFuncDesc.m_Flags & DTAPI_CAP_ASI) != 0)

 Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IOSTD, DTAPI_IOCONFIG_ASI);

Figure 12. Code to set the I/O configuration of a port to ASI.

4.3.2. Relation to Capabilities

SetIoConfig and GetIoConfig have four parameters that are closely linked to capabilities:

Parameter Description

Port Physical port number.

Group Same as capability group.
Only I/O capabilities have a corresponding I/O configuration group.

Value Capability.

SubValue Sub-capability.

Example

An output port that can be configured in “double-buffered” mode (output signal available on two
ports) has capability DTAPI_CAP_OUTPUT and sub-capability DTAPI_CAP_DBLBUF, both located in the
IODIR group.

 Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IODIR, // Group

 DTAPI_IOCONFIG_OUTPUT, // Value

 DTAPI_IOCONFIG_DBLBUF); // Subvalue

Figure 13. Code to configure a port for double-buffering.

For a complete list of I/O configuration groups, values and subvalues, see the DTAPI_IOCONIG_XXX
constants in DTAPI.h

4.3.3. SetIoConfig Variants

Two SetIoConfig functions are defined, one at device level and one at channel level. The I/O con-
figuration of a port at device level can only be changed when the port is not used (no channel object
attached). Some, but not all, I/O configuration changes can also be performed at channel level. This
can only be done when the channel object is attached to the hardware.

In some cases, there are dependencies between I/O ports on the same DekTec device. The driver
validates whether the I/O configuration of multiple ports is consistent with each other. For example,

DTAPI Manual
Overview and data formats

16

on the DTA-2137 only one port can be set to DTAPI_IOCONFIG_SWS2APSK, otherwise an error is re-
turned.

To simplify configuration changes that must be done in a specific order, and to prevent temporary
invalid configurations, a “transaction” variant of SetIoConfig is available. With this variant the I/O
configuration settings only needs to be valid before and after the complete transaction, not after each
individual configuration action.

DTAPI Manual
Overview and data formats

17

5. DTAPI Concepts

5.1. Getting Statistics

DTAPI uses class DtStatistic to represent measurements and statistics. This class is typically used
for receivers. A summary of its declaration is shown below. Refer to DTAPI.h for the full definition.

struct DtStatistic

{

 DtStatistic();

 DtStatistic(int StatisticId); // Constructor with DTAPI_STAT_xxx initialization

 enum StatValueType

 {

 STAT_VT_UNDEFINED, STAT_VT_BOOL, STAT_VT_DOUBLE, STAT_VT_INT

 };

 DTAPI_RESULT m_Result; // Result of retrieving the statistic

 int m_StatisticId; // Identifies the statistic: DTAPI_STAT_XXX

 StatValueType m_ValueType; // Value type of statistic: STAT_VT_XXX

 union {

 bool m_ValueBool; // Value if value type is STAT_VT_BOOL

 double m_ValueDouble; // Value if value type is STAT_VT_DOUBLE

 int m_ValueInt; // Value if value type is STAT_VT_INT

 };

 DTAPI_RESULT GetName(..), GetValue(..), SetId(..);

};

Statistics are identified by their ID (m_StatisticId). See DTAPI.h for a list of DTAPI_STAT_XXX identi-
fiers. The function GetName() returns both a full name and a short name of the statistic. The value of
the statistic can be retrieved with GetValue().

• If the type of a statistic is STAT_VT_INT, its value can be retrieved both as int and as double.

The following statistics functions are available:

Function Description

GetStatistic(int, int&)

GetStatistic(int, double&)

GetStatistic(int, bool&)

Return a single statistic.

GetStatistics(int, DtStatistic*) Return an array of statistics.

GetSupportedStatistics(int&, DtStatistic*) Returns all supported statistics on a port.

5.2. Transmit on Timestamp

‘Transmit on Timestamp’ is a special transmission mode for ASI outputs to transmit transport packets
at user-defined times. This enables generation of a jittered stream, a feature that can be used to build
test generators that simulate actual network conditions.

The transmit-on-timestamp mode is enabled by including the DTAPI_TXMODE_TXONTIME flag in the first
argument of the SetTxMode method. Timestamps reference the 54-MHz system reference clock.

The data format of a transmit-on-timestamp stream is described in §9.7. Timestamps are stored in
little-endian format in 4 bytes that are located before each packet. The format is identical to that

DTAPI Manual
Overview and data formats

18

generated by an ASI receive channel in time-stamped mode. Timestamps are used only for timing of
the output stream; the timestamps itself are not transmitted.

It is important that the data in txontime_stream() is formatted correctly from the start. When the
stream is not aligned correctly, data in the stream may be interpreted as timestamp, potentially causing
long delays between transmission of packets. The device cannot automatically recover from this situ-
ation and a channel reset is required to resume synchronized operation.

The following limitations apply:
• Transmit on timestamp is not supported in raw mode (DTAPI_TXMODE_RAW);

• Null packet stuffing (DTAPI_TXSTUFF_MODE_ON) is not supported.

• In transmit-on-timestamp mode, the transmit channel will automatically operate in burst
mode, even if the DTAPI_TXMODE_BURST flag is not specified.

When starting transmission by setting transmit control to DTAPI_TXCTRL_SEND, the timestamp of the
first packet is stored as reference and the packet is sent out immediately. For all other packets, the
number of 54-MHz cycles relative to the timestamp of the first packet is computed, and the packets
are sent out the computed number of cycles after the first packet.

5.3. SDI Genlock Support

SDI I/O adapters with an on-board VCXO (DTA-145, DTA-2144 and DTA-2145) are capable of ‘SDI
genlock’. The SDI output(s) can be locked to an incoming SDI signal, such that the Start-of-Active-
Video (SAV) symbol is sent on the SDI output at virtually the same time as the SAV symbol is entering
the SDI input.

To genlock an SDI output, an application shall do the following:

1. Set the I/O configuration for port #1 to DTAPI_IOCONFIG_GENREF and specify the video standard
the port should lock to. Once port #1 is configured as GENREF input, the driver will extract the
SDI timing from the SDI signal presented to the port.

2. Set the I/O configuration for the output port to DTAPI_IOCONFIG_GENLOCKED.

3. Attach an output channel object to the output port and set TxMode to match the configured
reference video standard.

// Pre-condition: Dvc is attached to

// Configure port #1 as genlock reference input for SDI625

Dvc.SetIoConfig(1, DTAPI_IOCONFIG_GENREF, DTA1XX_GENLOCK_SDI625);

// Configure port #2 as genlocked output port

Dvc.SetIoConfig(2, DTAPI_IOCONFIG_GENLOCKED);

// Attach to port #2

DtOutp.AttachToPort(&DtDvc, 2);

// Initialise channel to initial 'safe' state

DtOutp.SetTxControl(DTAPI_TXCTRL_IDLE);

// Set the TxMode to SDI

DtOutp.SetTxMode(DTAPI_TXMODE_SDI_FULL, DTAPI_TXSTUFF_MODE_ON);

etc.

Figure 14. Configuring genlock.

DTAPI Manual
Overview and data formats

19

It is not necessary to attach to the genlock reference port. The application, or another application,
may still open the port as an input, with the limitation that port #1 must be operated in an SDI mode
that matches the configured reference video standard.

5.4. Vital Product Data (VPD)

Vital Product Data (VPD) is product identification information stored in an EEPROM on board of DekTec
devices. The read-only part of VPD is loaded in the manufacturing process. The read/write part is used
for licensing purposes and for storing customer-specific product information.

VPD is initialized as a collection of items, each identified by a keyword. Most keywords are 2-character
strings (e.g. “PD” for Production Date), with the exception of the VPD ID String, which is identified by
“VPDID”.

Three member functions of DtDevice are defined to manipulate VPD:

- VpdRead – Read VPD-item, given a keyword.

- VpdWrite – Write VPD-item, given a keyword and item string. If the item existed, the item string is
overwritten, unless the VPD item is read-only, in which case an error code is returned.

- VpdDelete – Delete VPD item. Read-only VPD item cannot be deleted.

DTAPI Manual
Overview and data formats

20

6. Multi-PLP Extensions

Multi-PLP modulation is a specific DTAPI function that enables application programs to create single-
PLP and multi-PLP modulators for ATSC 3.0, DVB-C2, DVB-T2 and ISDB-Tmm. The classes and struc-
tures that are related to multi-PLP modulation are specified in the document DTAPI Reference – Multi-
PLP Extensions. The main DTAPI header file and library include the class definitions required for multi-
PLP modulation. This section describes the usage of these classes and structures.

6.1. Licensing

The multi-PLP classes require an ATSC 3.0 (DTC-386), a DVB-C2 (DTC-379), a DVB-T2 (DTC-378)),
an ISDB-Tmm (DTC-382) or a GOLD license on the modulator card. If access to I/Q samples is required,
an additional IQ license (DTC-371) must be present.

6.2. Multi-PLP Object Model

The multi-PLP modulator is represented by a “Multi-PLP Modulator” object that is encapsulated by the
DtMplpOutpChannel class. When multi-PLP modulation parameters are set through a SetModControl
method, multi-PLP modulation is enabled, and input FIFOs are created for each PLP source. Methods
are provided to write into the individual MPLP FIFOs and to control them. The DtMplpOutpChannel
object transfers the modulation results through the device driver to the device.

Figure 15. Example of a DtDevice object and a DtMplpOutpChannel object encapsulating a

multi-PLP modulator.

In case single-PLP modulation parameters are set, only one FIFO is created and the multi-PLP modu-
lator acts as a single-PLP modulator.

DTAPI Manual
Overview and data formats

21

6.3. Attaching to a Multi-PLP Modulator

Using the DTAPI multi-PLP extensions is no different from using a standard modulator channel, except
that DtMplpOutpChannel is used instead of OutpChannel. First, a DtDevice object has to be instanti-
ated and attached to the hardware, and then a DtMplpOutpChannel object has to be attached to the
device.

// Error-handling code has been omitted

DtDevice Dvc;

Dvc.AttachToSerial(2115123456);

DtMplpOutpChannel Outp;

Outp.AttachToPort(&Dvc, 1);

Figure 16. Attaching a multi-PLP modulator channel to the hardware.

6.4. Virtual Channels

A standard output channel writes modulated I/Q samples directly to the hardware. The DTAPI multi-
PLP extensions support a new type of channel, a virtual channel, enabling custom processing of the
multi-PLP modulator output. For example, the modulated I/Q samples can be written to a file.

A virtual channel can be created using the channel’s AttachVirtual member function. The first pa-
rameter of this function, a pointer to a DtDevice object, identifies the hardware device carrying the
licenses to enable the MPLP extensions. The second parameter specifies the callback function and the
third parameter an opaque pointer. When DTAPI has generated new output, the callback function is
invoked with the opaque pointer and I/Q samples as arguments

Example code to create a virtual channel is shown in Figure 17.

{

 DtDevice Dvc;

 // Code to attach to device goes here

 DtMplpOutpChannel Outp;

 if (Outp.AttachVirtual(&Dvc, ::WriteMySsmps, NULL) != DTAPI_OK)

 {

 // Error-handling code

 }

 etc.

}

bool WriteMySamps(void* pOpaque, void* pVirtOut)

{

 // Code processing the generated data,

 // e.g. writing to file

}

Figure 17. Attaching a DtMplpOutpChannel object to a virtual output.

To avoid memory leaks, a virtual DtMplpOutpChannel object shall be detached from the hardware
after all operations on the channel have been completed.

6.5. Streaming MPLP Data

The core of a multi-PLP modulator program is shown in Figure 18. The code assumes:

- DtDevice object Dvc and DtMplpOutpChannel object Outp have been attached to the hardware.

- Multi-PLP modulation parameters have been set.

DTAPI Manual
Overview and data formats

22

- GetTsData(i, Buf, Max) is the user-supplied function that writes maximally Max new Transport-
Stream data bytes in Buf for MPLP-FIFO/PLP index i, and returns the number of bytes written.

The transmission control is set to Hold, which enables multi-PLP modulation and DMA but keeps actual
transmission disabled.

// PRE: Dvc and Outp attached

// MPLP modulation parameters set

char Buf[BUFSIZE];

int NumBytes = 1;

int TxControl = DTAPI_TXCTRL_HOLD;

Outp.SetTxControl(TxControl);

// Main loop

while (NumBytes != 0)

{

 // Transmission in hold?

 if (TxControl == DTAPI_TXCTRL_HOLD)

 {

 // Check whether initial load reached

 int Load;

 Outp.GetFifoLoad(Load);

 if (Load >= INILOAD)

 {

 TxControl = DTAPI_TXCTRL_SEND;

 Outp.SetTxControl(TxControl);

 }

 }

 // Try to fill all input FIFOs

 bool AllFifosFilled = true;

 for (int i=0; i<NumInputs && NumBytes!=0; i++)

 {

 // MPLP FIFO (still) filled?

 int NumFree;

 Outp.GetMplpFifoFree(i, NumFree);

 if (NumFree < BUFSIZE)

 continue; // Yes; Next FIFO

 AllFifosFilled = false;

 NumBytes = GetTsData(i, Buf, BUFSIZE);

 Outp.WriteMplp(i, Buf, NumBytes);

 }

 // All FIFOs filled?

 if (AllFifosFilled)

 Sleep(10); // Sleep for a while

}

Figure 18. Streaming data to an output.

When the Transmit FIFO contains its initial load, actual transmission can be started by setting trans-
mission control to Send. The main loop then supplies additional data to the MPLP FIFOs until the data
sources are exhausted.

The following factors should be considered to achieve optimal results:

- Modulation of a frame is only possible when sufficient data is available for all PLPs. A lengthy
transfer to one MPLP FIFO may cause underflow of another MPLP FIFO, stalling the modulation
process. To prevent this, the transfer size should not be too large. For efficiency reasons, the transfer

DTAPI Manual
Overview and data formats

23

size should not be too small either. Therefore, it is recommended to use a transfer size between 4K
bytes and 32K bytes.

- The initial transmit-FIFO load (INILOAD) should not be too small, to prevent an early transmit-FIFO
underflow in the main loop. A value close to the maximum hardware FIFO size is recommended.
Warning: The initial load cannot be larger than the transmit-FIFO size: when the transmit FIFO is
full, DMA will stall and the application “hangs.”

- As far as DTAPI is concerned, the GetTsData function may return Transport-Stream data aligned
at arbitrary 4-byte boundaries. However, for many data-generating algorithms, alignment on
packet boundaries will be a natural choice. In such applications it is convenient and efficient to set
the buffer size to a multiple of the packet size.

6.6. Complete Example

Figure 19 shows the code of a simple DVB-T2 stream generator containing 2 data PLPs and a common
PLP.

DTAPI Manual
Overview and data formats

24

Obviously, this example is just a first step towards a production-quality stream generator application.

// Command-line program T2Sample

// Outputs DVB-T2 signal according to V&V402 through DTA-2115

#include “DTAPI.h”

#include <stdio.h>

int main(int argc, char* argv[])

{

 char TempRdBuf[8192];

 DTAPI_RESULT dr;

 DtDevice Dvc;

 DtMplpOutpChannel Outp;

 // Attach to the DTA-2115

 dr = Dvc.AttachToType(2115);

 if (dr != DTAPI_OK)

 exit(dr);

 // Use the modulator port

 dr = Outp.AttachToPort(&Dvc, 1);

 if (dr != DTAPI_OK)

 exit(dr);

 // Set RF frequency to 666MHz

 dr = Outp.SetRfControl(666000000);

 if (dr != DTAPI_OK)

 exit(dr);

 // Set RF level -20.0 dBm

 dr = Outp.SetOutputLevel(-200);

 if (dr != DTAPI_OK)

 exit(dr);

 // Set default DVB-T2 values

 DtDvbT2Pars DvbT2Pars;

 // Below you'll find the parameter settings corresponding to VV402

 // General parameters

 DvbT2Pars.m_T2Version = DTAPI_DVBT2_VERSION_1_2_1;

 DvbT2Pars.m_Bandwidth = DTAPI_DVBT2_8MHZ;

 DvbT2Pars.m_FftMode = DTAPI_DVBT2_FFT_32K;

 DvbT2Pars.m_GuardInterval = DTAPI_DVBT2_GI_1_128;

 DvbT2Pars.m_Miso = DTAPI_DVBT2_MISO_OFF;

 DvbT2Pars.m_Papr = DTAPI_DVBT2_PAPR_NONE;

 DvbT2Pars.m_BwtExt = true;

 DvbT2Pars.m_PilotPattern = 7;

 DvbT2Pars.m_L1Modulation = DTAPI_DVBT2_BPSK;

 DvbT2Pars.m_CellId = 0;

 DvbT2Pars.m_NetworkId = 12421;

 DvbT2Pars.m_T2SystemId = 32769;

 DvbT2Pars.m_L1Repetition = false;

 // T2-Frame related parameters

 DvbT2Pars.m_NumT2Frames = 2;

 DvbT2Pars.m_NumDataSyms = 27;

 DvbT2Pars.m_NumSubslices = 108;

 // No FEF

 DvbT2Pars.m_FefEnable = false;

DTAPI Manual
Overview and data formats

25

 // 1 RF channel

 DvbT2Pars.m_NumRfChans = 1;

 DvbT2Pars.m_StartRfIdx = 0; // n.a. for non-TFS

 DvbT2Pars.m_RfChanFreqs[0] = 666000000;

 // 3 PLPs

 DvbT2Pars.m_NumPlps = 3;

 // PLP[0] First data PLP

 DvbT2Pars.m_Plps[0].m_Id = 0;

 DvbT2Pars.m_Plps[0].m_GroupId = 0;

 DvbT2Pars.m_Plps[0].m_Type = DTAPI_DVBT2_PLP_TYPE_2;

 DvbT2Pars.m_Plps[0].m_Modulation = DTAPI_DVBT2_QPSK;

 DvbT2Pars.m_Plps[0].m_CodeRate = DTAPI_DVBT2_COD_1_2;

 DvbT2Pars.m_Plps[0].m_FecType = DTAPI_DVBT2_LDPC_64K;

 DvbT2Pars.m_Plps[0].m_Hem = true;

 DvbT2Pars.m_Plps[0].m_Npd = true;

 DvbT2Pars.m_Plps[0].m_Issy = DTAPI_DVBT2_ISSY_LONG;

 DvbT2Pars.m_Plps[0].m_IssyBufs = 1048576;

 DvbT2Pars.m_Plps[0].m_IssyTDesign = 949777;

 DvbT2Pars.m_Plps[0].m_CompensatingDelay = -1; // Auto

 DvbT2Pars.m_Plps[0].m_TimeIlType = DTAPI_DVBT2_IL_ONETOONE;

 DvbT2Pars.m_Plps[0].m_TimeIlLength = 1;

 DvbT2Pars.m_Plps[0].m_FrameInterval = 1;

 DvbT2Pars.m_Plps[0].m_FirstFrameIdx = 0;

 DvbT2Pars.m_Plps[0].m_Rotation = true;

 DvbT2Pars.m_Plps[0].m_InBandAFlag = true;

 DvbT2Pars.m_Plps[0].m_NumOtherPlpInBand = 0;

 DvbT2Pars.m_Plps[0].m_InBandBFlag = false;

 DvbT2Pars.m_Plps[0].m_FfFlag = false;

 DvbT2Pars.m_Plps[0].m_FirstRfIdx = 0;

 DvbT2Pars.m_Plps[0].m_NumBlocks = 14;

 DvbT2Pars.m_Plps[0].m_TsRate = 6000000;

 // PLP[1] Second data PLP

 DvbT2Pars.m_Plps[1].m_Id = 1;

 DvbT2Pars.m_Plps[1].m_GroupId = 0;

 DvbT2Pars.m_Plps[1].m_Type = DTAPI_DVBT2_PLP_TYPE_2;

 DvbT2Pars.m_Plps[1].m_Modulation = DTAPI_DVBT2_QPSK;

 DvbT2Pars.m_Plps[1].m_CodeRate = DTAPI_DVBT2_COD_1_2;

 DvbT2Pars.m_Plps[1].m_FecType = DTAPI_DVBT2_LDPC_64K;

 DvbT2Pars.m_Plps[1].m_Hem = true;

 DvbT2Pars.m_Plps[1].m_Npd = true;

 DvbT2Pars.m_Plps[1].m_Issy = DTAPI_DVBT2_ISSY_LONG;

 DvbT2Pars.m_Plps[1].m_IssyBufs = 1048576;

 DvbT2Pars.m_Plps[1].m_IssyTDesign = 949777;

 DvbT2Pars.m_Plps[1].m_CompensatingDelay = -1; // Auto

 DvbT2Pars.m_Plps[1].m_TimeIlType = DTAPI_DVBT2_IL_ONETOONE;

 DvbT2Pars.m_Plps[1].m_TimeIlLength = 1;

 DvbT2Pars.m_Plps[1].m_FrameInterval = 1;

 DvbT2Pars.m_Plps[1].m_FirstFrameIdx = 0;

 DvbT2Pars.m_Plps[1].m_Rotation = true;

 DvbT2Pars.m_Plps[1].m_InBandAFlag = true;

 DvbT2Pars.m_Plps[1].m_NumOtherPlpInBand = 0;

 DvbT2Pars.m_Plps[1].m_InBandBFlag = false;

 DvbT2Pars.m_Plps[1].m_FfFlag = false;

 DvbT2Pars.m_Plps[1].m_FirstRfIdx = 0;

 DvbT2Pars.m_Plps[1].m_NumBlocks = 14;

 DvbT2Pars.m_Plps[1].m_TsRate = 6000000;

 // PLP[2] Common PLP

DTAPI Manual
Overview and data formats

26

 DvbT2Pars.m_Plps[2].m_Id = 2;

 DvbT2Pars.m_Plps[2].m_GroupId = 0;

 DvbT2Pars.m_Plps[2].m_Type = DTAPI_DVBT2_PLP_TYPE_COMM;

 DvbT2Pars.m_Plps[2].m_Modulation = DTAPI_DVBT2_QPSK;

 DvbT2Pars.m_Plps[2].m_CodeRate = DTAPI_DVBT2_COD_1_2;

 DvbT2Pars.m_Plps[2].m_FecType = DTAPI_DVBT2_LDPC_16K;

 DvbT2Pars.m_Plps[2].m_Hem = true;

 DvbT2Pars.m_Plps[2].m_Npd = true;

 DvbT2Pars.m_Plps[2].m_Issy = DTAPI_DVBT2_ISSY_LONG;

 DvbT2Pars.m_Plps[2].m_IssyBufs = 1048576;

 DvbT2Pars.m_Plps[2].m_IssyTDesign = 949777;

 DvbT2Pars.m_Plps[2].m_CompensatingDelay = -1; // Auto

 DvbT2Pars.m_Plps[2].m_TimeIlType = DTAPI_DVBT2_IL_ONETOONE;

 DvbT2Pars.m_Plps[2].m_TimeIlLength = 1;

 DvbT2Pars.m_Plps[2].m_FrameInterval = 1;

 DvbT2Pars.m_Plps[2].m_FirstFrameIdx = 0;

 DvbT2Pars.m_Plps[2].m_Rotation = true;

 DvbT2Pars.m_Plps[2].m_InBandAFlag = true;

 DvbT2Pars.m_Plps[2].m_NumOtherPlpInBand = 0;

 DvbT2Pars.m_Plps[2].m_InBandBFlag = false;

 DvbT2Pars.m_Plps[2].m_FfFlag = false;

 DvbT2Pars.m_Plps[2].m_FirstRfIdx = 0;

 DvbT2Pars.m_Plps[2].m_NumBlocks = 9;

 DvbT2Pars.m_Plps[2].m_TsRate = 6000000;

 // PLP Inputs

 // PLP[0] input uses MPLP FIFO index 0

 DvbT2Pars.m_PlpInputs[0].m_DataType = DtPlpInpPars::TS188;

 DvbT2Pars.m_PlpInputs[0].m_FifoIdx = 0;

 DvbT2Pars.m_PlpInputs[0].m_BigTsSplit.m_Enabled = false;

 // PLP[1] input uses MPLP FIFO index 1

 DvbT2Pars.m_PlpInputs[1].m_DataType = DtPlpInpPars::TS188;

 DvbT2Pars.m_PlpInputs[1].m_FifoIdx = 1;

 DvbT2Pars.m_PlpInputs[1].m_BigTsSplit.m_Enabled = false;

 // PLP[2] input uses MPLP FIFO index 2

 DvbT2Pars.m_PlpInputs[2].m_DataType = DtPlpInpPars::TS188;

 DvbT2Pars.m_PlpInputs[2].m_FifoIdx = 2;

 DvbT2Pars.m_PlpInputs[2].m_BigTsSplit.m_Enabled = false;

 // No virtual output is used through callback functions

 DvbT2Pars.m_VirtOutput.m_Enabled = false;

 // No test point data output

 DvbT2Pars.m_TpOutput.m_Enabled = false;

 // No PAPR ACE

 DvbT2Pars.m_PaprPars.m_AceEnabled = false;

 // Only P2 P2 PAPR TR

 DvbT2Pars.m_PaprPars.m_TrEnabled = true;

 DvbT2Pars.m_PaprPars.m_TrP2Only = true;

 DvbT2Pars.m_PaprPars.m_TrMaxIter = 1;

 DvbT2Pars.m_PaprPars.m_TrVclip = 4.32;

 // Enable L1 PAPR

 DvbT2Pars.m_PaprPars.m_L1AceEnabled = true;

 DvbT2Pars.m_PaprPars.m_L1AceCMax = 0.0;

DTAPI Manual
Overview and data formats

27

 // PAPR Bias ballancing and bias ballancing cells

 DvbT2Pars.m_PaprPars.m_BiasBalancing = 1;

 DvbT2Pars.m_PaprPars.m_NumBiasBalCells = 0;

 // No TX signalling

 DvbT2Pars.m_TxSignature.m_TxSigAuxEnabled = false;

 DvbT2Pars.m_TxSignature.m_TxSigFefEnabled = false;

 // We have RF output so no T2MI output

 DvbT2Pars.m_T2Mi.m_Enabled = false;

 // No RBM validation

 DvbT2Pars.m_RbmValidation.m_Enabled = false;

 // Check whether parameters are valid

 dr = DvbT2Pars.CheckValidity();

 if (dr != DTAPI_OK)

 exit(dr);

 // Get the TSRates of the PLPs

 for (int i=0; i<3; i++)

 {

 int TsRate;

 DtapiModPars2TsRate(TsRate, DvbT2Pars, i);

 printf("TS-rate PLP[%d]: %d bps\n", i, TsRate);

 }

 // Set transmitter to IDLE

 dr = Outp.SetTxControl(DTAPI_TXCTRL_IDLE);

 if (dr != DTAPI_OK)

 exit(dr);

 // Initialize the modulator.

 dr = Outp.SetModControl(DvbT2Pars);

 if (dr != DTAPI_OK)

 exit(dr);

 // Set transmitter to HOLD

 dr = Outp.SetTxControl(DTAPI_TXCTRL_HOLD);

 if (dr != DTAPI_OK)

 exit(dr);

 bool InSendMode = false; // Not in SEND mode (yet)

 // Determine the FIFO load threshold

 int RfFifoSize;

 dr = Outp.GetFifoSize(RfFifoSize);

 if (dr != DTAPI_OK)

 exit(dr);

 // Threshold is set to 75% of the FIFO size

 int IniLoad = 3*RfFifoSize / 4;

 // Open the input files and check the opened files

 const int NumInputs = 3;

 FILE* Files[NumInputs];

 Files[0] = fopen("C:\\Data\\VV402_Plp0.ts", "rb");

 Files[1] = fopen("C:\\Data\\VV402_Plp1.ts", "rb");

 Files[2] = fopen("C:\\Data\\VV402_Plp2.ts", "rb");

 if (Files[0]==NULL || Files[1]==NULL || Files[2]==NULL)

 dr = DTAPI_E;

DTAPI Manual
Overview and data formats

28

 printf("Press any key to stop...");

 // Do while no keyboard key is hit and all is OK

 while (!_kbhit() && dr == DTAPI_OK)

 {

 // If not in SEND mode yet, check whether we can go to SEND mode

 if (!InSendMode)

 {

 // Get the FIFO load of the RF output

 int RfFifoLoad;

 dr = Outp.GetFifoLoad(RfFifoLoad);

 if (dr != DTAPI_OK)

 break;

 if (RfFifoLoad >= IniLoad)

 {

 // Goto SEND mode

 dr = Outp.SetTxControl(DTAPI_TXCTRL_SEND);

 if (dr != DTAPI_OK)

 break;

 // Now we can enter SEND mode

 InSendMode = true;

 }

 }

 // Lets assume all MPLP FIFOs are filled until found otherwise

 bool AllFifosFilled = true;

 for (int FifoIdx=0; FifoIdx<NumInputs && dr == DTAPI_OK; FifoIdx++)

 {

 // Check the amount free in the MPLP FIFO

 int NumFree;

 dr = Outp.GetMplpFifoFree(FifoIdx, NumFree);

 if (dr != DTAPI_OK)

 break;

 // Skip this MPLP FIFO if too less room is available

 if (NumFree < sizeof(TempRdBuf))

 continue; // next FIFO

 // This MPLP FIFO is not filled enough

 AllFifosFilled = false;

 // Read a chunck of data

 int NumRead = (int)::fread(TempRdBuf, 1, sizeof(TempRdBuf),

 Files[FifoIdx]);

 // EOF? then goto begin of file

 if (feof(Files[FifoIdx]))

 ::fseek(Files[FifoIdx], 0, SEEK_SET);

 // Write the data to the MPLP FIFO

 dr = Outp.WriteMplp(FifoIdx, TempRdBuf, NumRead);

 if (dr != DTAPI_OK)

 break;

 }

 // All FIFOs filled? then sleep for a while, to prevent an endless loop.

 if (AllFifosFilled)

 Sleep(10);

 }

 // Get and print the status of the DVB-T2 modulation

DTAPI Manual
Overview and data formats

29

 DtDvbT2ModStatus ModStatus;

 Outp.GetMplpModStatus(&ModStatus);

 printf("\nDVB-T2 Modulator Status:"

 "\n\t#BitrateOVF: %I64d"

 "\n\t#BlockOVF : %I64d"

 "\n\t#TTO-Error : %I64d\n",

 ModStatus.m_BitrateOverflows,

 ModStatus.m_PlpNumBlocksOverflows,

 ModStatus.m_TtoErrorCount);

 // Set transmitter to IDLE again

 Outp.SetTxControl(DTAPI_TXCTRL_IDLE);

 // Detach hardware

 Outp.Detach(DTAPI_INSTANT_DETACH);

 Dvc.Detach();

 // Close the input files

 for (int i=0; i<NumInputs; i++)

 if (Files[i] != NULL)

 fclose(Files[i]);

 return dr;

}

Figure 19. DVB-T2 stream generator with the DTA-2115.

DTAPI Manual
Overview and data formats

30

7. Advanced Demodulator API

7.1. Introduction

The advanced demodulator API is a subsystem of DTAPI that supports the reading of one or multiple
real-time streams and getting advanced measurements using SDR (Software Defined Radio) tech-
niques. Each stream can be a data stream or a stream of advanced RF-measurement values.

The advanced demodulator API is only available on receiver devices that can receive and demodulate
I/Q samples, at the moment only the DTA-2131.

7.2. Streaming Model

The streams are generated with call-back functions that are to be provided by the DTAPI user. Multiple
parallel data streams can be generated in parallel:
• For ATSC 3.0, DVB-C2 and DVB-T2: multiple PLPs can be generated in parallel. Data PLPs

can be combined with common PLPs.
• For DVB-T2 a T2MI stream with all PLPs embedded can be generated2.
• For ISDB-T, layer A, B and C can be demodulated in parallel.

Also, multiple streams of advanced RF-measurement values can be generated in parallel:
• Constellation data points
• Spectrum data points
• Transfer Function data points3
• Impulse Response data points4

The classes and structures that are related to Advanced Demodulator are specified in the document
DTAPI Reference – Advanced Demodulator API. The main DTAPI header file and library include the
class definitions required for the Advanced Demodulator. This section describes the usage of these
classes and structures.

7.3. Licensing

Demodulation in DTAPI without advanced RF-measurements does not require a license. It does not
matter whether the underlying device is a hardware demodulator, such as the DTA-2138 DVB-T2 /
DVB-C2 receiver, or an I/Q demodulator card such as the DTA-2131.

The following licenses are available to enable advanced RF-measurements functionality:
• The RXAB license enables usage of advanced RF-measurements for ATSC (8VSB), DAB,

DVB-C2, DVB-T, QAM-A (DVB-C), QAM-B, QAM-C and ISDB-T.
• The RXAT2 license enables usage of advanced RF-measurements for the modulation stand-

ards mentioned under RXAB and includes DVB-T2.

• The RXAA3 license enables usage of advanced RF-measurements for the modulation stand-
ards mentioned under RXAB and includes ATSC3.0.

• The RXA license enables usage of advanced RF-measurements for all modulation standards.

• The XPRT license (DTC-344-XPRT) enables the advanced demodulation/RF-analysis applica-
tions (Atsc3Xpert, C2Xpert and T2Xpert) it also enables usage of advanced RF-measurements
for all modulation standards.

2 Either a T2MI stream can be generated, or one or more PLPs, but not both at the same time.
3 Only available for OFDM based modulation standards
4 Only available for OFDM based modulation standards

DTAPI Manual
Overview and data formats

31

7.4. Advanced Demodulator Object Model

The advanced demodulator is represented by the DtAdvDemod class. The usage of the advanced clas-
ses differs significantly from the “normal” DTAPI input channels.

• The standard input channel class DtInpChannel uses a FIFO to store the demodulated
data packets and a read function is used to process the packets.

• The advanced demodulator class DtAdvDemod does not store the data but uses call-back
functions to convey Transport Packets or measurements values. By registering multiple
call-backs, the user can receive multiple PLP and stream with measurement values simul-
taneously.

7.5. Attaching to an Advanced Demodulator

Attaching an advanced demodulator object to a device is no different from using a standard demod-
ulator channel, except that DtAdvDemod is used instead of DtInpChannel. First, a DtDevice object must
be instantiated and attached to the hardware, and then a DtAdvDemod object can be attached to the
device.

// Error-handling code has been omitted

DtDevice Dvc;

Dvc.AttachToSerial(2131123456);

// Attach an advanced demodulator object to the device

DtAdvDemod AdvDemod;

AdvDemod.AttachToPort(&Dvc, 1);

Figure 20. Attaching a DtAdvDemod object to the hardware.

7.6. Virtual Input Channel – User-Supplied I/Q Samples

The advanced demodulator API supports a new type of input channel, a virtual input, enabling pro-
cessing of user supplied I/Q samples. It enables the user to feed the advanced demodulator with I/Q
samples, e.g. from file, instead of DTAPI reading the data from a physical receiver such as the
DTA-2131.

A virtual channel can be created with the AttachVirtual member function. The first parameter of this
function is a pointer to a DtDevice object. This device is only required to hold the license for the
advanced demodulator API (license RXA). The second parameter specifies the call-back function for
obtaining the I/Q samples, while the third parameter is an opaque pointer. When the advanced de-
modulator requires new samples, the call-back function is invoked with the opaque pointer and an
I/Q sample buffer as arguments.

DTAPI Manual
Overview and data formats

32

Example code to create a virtual channel is shown in Figure 21.

{

 // Device is only used for holding the RX_ADV license

 DtDevice LicDvc;

 // Code to attach to device goes here

 DtAdvDemod AdvDemod;

 if (AdvDemod.AttachVirtual(&LicDvc, ::ReadIqSamps, NULL) != DTAPI_OK)

 {

 // Error-handling code

 }

 etc.

}

void ReadIqSamps(void* pOpaque, unsigned char* pIqBuf,

 int IqBufSize, int& IqLength)

{

 // Code to get I/Q samples (eg from file) and write to pIqBuf

}

Figure 21. Attaching a DtAdvDemod object to a virtual input.

To avoid memory leaks, a virtual DtAdvDemod object shall be detached from the hardware after all
operations on the channel have been completed.

7.7. Receiving PLP Data and Constellation points

The core of an application using the advanced demodulator is shown in Figure 22. The code assumes
that an DtAdvDemod object T2In has been attached to the hardware.

This example demodulates one PLP and for the same PLP the constellation points are streamed to the
application using call-back functions. These “streaming” callback functions should not block and
should be kept short in processing time to avoid that the advanced demodulator stalls. This example
could easily be extended to demodulate all PLPs and retrieve multiple streams with measurements

DTAPI Manual
Overview and data formats

33

simultaneously. The configuration parameters for stream selection are explained in detail in the doc-
ument DTAPI Reference – Advanced Demodulator API.

// Select DVB-T2 demodulation, 8MHz bandwidth

DtDemodPars* pModPars = new DtDemodPars();

pModPars->SetModType(DTAPI_MOD_DVBT2);

DtDemodParsDvbT2* T2Pars = pModPars->DvbT2();

T2Pars->m_Bandwidth = DTAPI_DVBT2_8MHZ;

T2Pars->m_T2Profile = 0;

T2In.SetDemodControl(pModPars);

T2In.SetTunerFrequency(666000000);

// Create DVB-T2 selection parameters with PLP number

DtDvbT2StreamSelPars T2StreamSelPars;

T2StreamSelPars.m_PlpId = 0;

T2StreamSelPars.m_CommonPlpId = -1; // Don’t use a common PLP

// Open a PLP stream using the selection parameters

DtStreamSelPars StreamSelPars;

StreamSelPars.m_Id = 1; // Unique ID

StreamSelPars.m_Type = DtStreamSelType::STREAM_DVBT2;

StreamSelPars.u.m_DvbT2 = T2StreamSelPars;

T2In.OpenStream(StreamSelPars);

// Select a stream of constellation points

DtConstelPlotSelPars ConstellationPars;

ConstellationPars.m_Index = 0; // PLP index

ConstellationPars.m_MaxNumPoints = 500;

ConstellationPars.m_ConstellationType = 0;

ConstellationPars.m_Period = 100; // 100ms

// Open this stream of constellation points

StreamSelPars.m_Id = 2; // Unique ID

StreamSelPars.m_Type = DtStreamSelType::STREAM_CONSTEL;

StreamSelPars.u.m_Constel = ConstellationPars;

T2In.OpenStream(StreamSelPars);

// Streaming data callback functions

T2In.RegisterCallback(WriteStreamFunc, NULL);

T2In.RegisterCallback(WriteMeasFunc, NULL);

// Start advanced demodulation

T2In.SetRxControl(DTAPI_RXCTRL_RCV);

// Callback functions

static void WriteStreamFunc(void* pOpaque, DtStreamSelPars& StreamSel,

 const unsigned char* pData, int Length)

{

 if (StreamSel.m_Id == 1)

 // Process transport packets

}

static void WriteMeasFunc(void* pOpaque, DtStreamSelPars& StreamSel,

 DtMeasurement* pMeasurement)

{

 if (StreamSel.m_Id == 2 &&

 pMeasurement ->m_MeasurementType == DtStreamSelType::STREAM_CONSTEL)

 // Process constellation points

}

Figure 22. Receiving a PLP and constellation points from a DVB-T2 signal.

DTAPI Manual
Overview and data formats

34

7.8. Retrieving Statistics

The GetStatistics method retrieves dynamic statistical information about the input signal. The ex-
ample in Figure 23 shows how to retrieve LDPC related statistics and the DVB-T2 L1 data structure.
Demodulation statistics can be retrieved using the DtInpChannel or the DtAdvDemod class and are
explained in detail in the document DTAPI Reference – Advanced Demodulator API.

DtDemodLdpcStats LdpcStats;

DtDemodLdpcStats* pLdpcStats = &LdpcStats;

DtDvbT2DemodL1Data L1data;

DtDvbT2DemodL1Data* pL1Data = &L1data;

DtStatistic Stats[2];

Stats[0].SetId(DTAPI_STAT_LDPC_STATS);

Stats[0].m_IdXtra[0] = 0; // plp id

Stats[1].SetId(DTAPI_STAT_DVBT2_L1DATA);

DTAPI_RESULT dr = TunPort.GetStatistics(2, Stats);

// Get LDPC statistics

Stats[0].GetValue(pLdpcStats);

if (Stats[0].m_Result == DTAPI_OK)

 printf("FEC max it: %d\n", pLdpcStats->m_FecBlocksItMax);

else

 printf("Result: %d\n",Stats[0].m_Result);

// Get DVB-T2 L1 data

Stats[1].GetValue(pL1Data);

if (Stats[1].m_Result == DTAPI_OK && pL1Data->m_L1Post.m_Valid)

 printf("MOD: %d\n", pL1Data->m_L1Post.m_Plps.at(0).m_Modulation);

else

 printf("Result: %d\n",Stats[1].m_Result);

Figure 23. Retrieve LDPC and DVB-T2 L1 statistical data.

7.9. Set Generic Demodulation Parameters

The software demodulation core has some generic parameters that are not specific to a demodulation
standard. These parameters can be set using the SetPars method in DtInpChannel or DtAdvDemod.
The example in Figure 24 sets two parameters that influence the CPU usage for the advanced demod-
ulation software.

// Configure average LDPC iterations, to set a limit on CPU usage

DtPar Pars[2];

Pars[0].m_ParId = DTAPI_PAR_DEMOD_LDPC_AVG;

Pars[0].m_ValueType = DtPar::ParValueType::PAR_VT_INT;

Pars[0].SetValue(3);

// Configure if MER measurement should be done (will influence CPU load)

Pars[1].m_ParId = DTAPI_PAR_DEMOD_MER_ENA;

Pars[1].m_ValueType = DtPar::ParValueType::PAR_VT_BOOL;

Pars[1].SetValue(true);

DTAPI_RESULT dr = T2In.SetPars(2,Pars);

if (dr != DTAPI_OK)

 printf("SetPars() failed.\n");

Figure 24. Configure CPU usage for demodulation using SetPars

DTAPI Manual
Overview and data formats

35

8. SDI over IP

8.1. Overview

SDI-over-IP is encapsulating an SDI stream in IP packets, transmitting it over an IP network and de-
encapsulating the stream back to SDI.

The DekTec network cards (DTA-160, DTA-2160, DTA-2162) support SD-SDI over RTP conforming to
the SMPTE-2022-5, SMPTE-2022-6 and SMPTE-2022-7 specifications. HD-SDI and 3G-SDI are not
(yet) supported.

DTAPI supports 10-bit full-frame SDI in both 525-line mode and 625-line mode. Please refer to sec-
tion 9.3 for details about the representation of 10-bit SDI in DTAPI.

8.2. Using SDI-over-IP with DTAPI

The usage DTAPI to transmit or receive SDI-over-IP is relatively straightforward. The sections below
provide code examples for initialising and configuring SDI-over-IP transmission and reception.

Before reception or transmission can begin, your application must configure the SDI standard with the
SetIpPars function. The m_VideoStandard member in class DtIpPars indicates the SDI standard to
use. Each IP channel may use a different SDI standard.

• Native SDI channels (not over IP) use SetIoConfig to set the SDI standard. This I/O configuration mecha-

nism is not supported for SDI-over-IP channels.

DTAPI Manual
Overview and data formats

36

8.3. SDI Transmit

Figure 25 shows a code snippet for initializing and configuring an output channel for transmitting 10-
bit 525-line SDI over IP to multicast IP address 239.1.1.1 with IP port 9999.

For correct operation, the size of the data written to the output channel must be a multiple of the SDI
frame size.

DtDevice Dvc;

DtOutpChannel Outp;

DtIpPars IpPars;

DTAPI_RESULT dr;

// Attach to a DTA-2162

dr = Dvc.AttachToType(2162);

if (dr != DTAPI_OK)

 exit(dr);

// Attach to GigE port 1

dr = Outp.AttachToPort(&Dvc, 1);

if (dr != DTAPI_OK)

 exit(dr);

// Set the transmit mode to 10-bit SDI full-frame mode

dr = Outp.SetTxMode(DTAPI_TXMODE_SDI_10B | DTAPI_TXMODE_SDI_FULL, 0);

if (dr != DTAPI_OK)

 exit(dr);

// Initialise the IP parameters

DtapiInitDtIpParsFromIpString(IpPars, “239.1.1.1”, NULL);

IpPars.m_DstPort = 9999;

IpPars.m_Protocol = DTAPI_PROTO_RTP;

IpPars.m_IpProfile.m_VideoStandard = DTAPI_VIDSTD_525I59_94;

dr = Outp.SetIpPars(&IpPars);

if (dr != DTAPI_OK)

 exit(dr);

// At this point the IP output channel is initialised.

// We can now set the output channel TxControl to HOLD and SEND.

// Writing SDI frames to the output buffer can be achieved with the

// code snippet described in section 3.5 of this document.

Figure 25. Code snippet to initialize transmission of 10-bit SD-SDI over IP

DTAPI Manual
Overview and data formats

37

8.4. SDI Receive

Figure 26 shows a code snippet for initializing and configuring an input channel for receiving 10-bit
525-line SDI format over IP from multicast IP address 239.1.1.1 and IP port 9999.

The input channel supports the ReadFrame function that returns a complete SDI frame from the input
buffer. See the “DTAPI Reference – Core Classes” for the details of this function.

DtDevice Dvc;

DtInpChannel Inp;

DtIpPars IpPars;

DTAPI_RESULT dr;

// Attach to a DTA-2162

dr = Dvc.AttachToType(2162);

if (dr != DTAPI_OK)

 exit(dr);

// Attach to GigE port 2

dr = Outp.AttachToPort(&Dvc, 2);

if (dr != DTAPI_OK)

 exit(dr);

// Set the receive mode to 10-bit SDI full-frame mode

dr = Outp.SetRxMode(DTAPI_RXMODE_SDI_10B | DTAPI_RXMODE_SDI_FULL);

if (dr != DTAPI_OK)

 exit(dr);

// Initialise the IP parameters

DtapiInitDtIpParsFromIpString(IpPars, “239.1.1.1”, NULL);

IpPars.m_DstPort = 9999;

IpPars.m_Protocol = DTAPI_PROTO_RTP;

IpPars.m_IpProfile.m_VideoStandard = DTAPI_VIDSTD_525I59_94;

dr = Inp.SetIpPars(&IpPars);

if (dr != DTAPI_OK)

 exit(dr);

// At this point the IP input channel is initialised.

// We can now set RxControl to RCV and wait for the SDI data.

// See section 0 for details. Instead of the Read function, we can use

// the ReadFrame function to read the complete SDI frame at once.

Figure 26. Code snippet to initialize reception of 10-bit SD-SDI over IP

DTAPI Manual
Overview and data formats

38

9. Definition of data formats

This section provides details about the different data formats used by DTAPI for transmitting and re-
ceiving data.

9.1. Generic Stream Encapsulation (GSE) Packet

GSE is defined in ETSI TS 102 606. It provides means to carry packet-oriented protocols such as IP on
physical layers such as DVB-T2 and DVB-C2. The multi-PLP modulator API and the advanced demod-
ulator API support GSE packets.

A GSE packet consists of a fixed-size header, followed by a variable size extension header and a data
part.

Syntax #bits Mnemonic

GsePacket() {

 protocol_type 16 uimsbf

 if (GseLabelType == NONE) {

 reserved 48 bslbf

 } else if (GseLabelType == 3BYTE) {

 label_3byte 24 bslbf

 reserved 24 bslbf

 } else if (GseLabelType == 6BYTE) {

 label_6byte
 }

48 bslbf

 for (i=0; i<N1; i++)

 extension_header_byte 8 bslbf

 for (i=0; i<N2; i++)

 data_byte 8 bslbf

}

protocol_type

Protocol type carried in the packet, 16-bit field (2 bytes network order). Refer to IETF RFC 4326:
"Unidirectional Lightweight Encapsulation (ULE) for Transmission of IP Datagrams over an
MPEG-2 Transport Stream (TS)" for details.

label_3byte, label_6byte

Label used for addressing, 0, 3 or 6 bytes. For the modulator, the address length is specified by
GseLabelType. The total length of the label and the reserved bits is 6 bytes.

extension_header_byte

Optional extension header bytes. The format depends on protocol type and is defined by the
ULE specification IETF RFC 4326.

data_byte

Packet data byte.

DTAPI Manual
Overview and data formats

39

9.2. L.3 Baseband Frame

L.3 Baseband frames are generated by an input channel if the DTAPI_RXMODE_STL3,

DTAPI_RXMODE_STL3FULL or DTAPI_RXMODE_STL3ALL receive-mode is used (see DTAPI Reference –
Core Classes function DtInpChannel::SetRxMode).

The L.3 Baseband frames are also used for DVB-S.2(X) L.3 baseband frame modulation (when the
DtOutpChannel::SetModControl is set to DTAPI_MOD_DVBS2_L3 or DTAPI_MOD_DVBS2X_L3).

Refer to the SatLabs L.3 document and for more details on the L3 fields.

Syntax #bits Mnemonic

L3_frame() {

 if (timestamp_flag) {

 TimeStamp[7..0] 8 uimsbf

 TimeStamp[15..8] 8 uimsbf

 TimeStamp[23..16] 8 uimsbf

 TimeStamp[31..24] 8 uimsbf

 }

 L3Sync /* 0xB8 */ 8 uimsbf

 AcmCommand 8 uimsbf

 if (AcmCommand points to DVB-S2X VL-SNR) {

 AcmCommand2 8 uimsbf

 }

 CNI 8 uimsbf

 PlFrameId 8 uimsbf

 BBHEADER() {

 MaType1 8 uimsbf

 MaType2 8 uimsbf

 Upl 16 uimsbf

 Dfl 16 uimsbf

 Sync 8 uimsbf

 SyncD 16 uimsbf

 Crc8 8 uimsbf

 }

 for (i=0; i<n; i++)

 PayloadByte 8 uimsbf

}

Notes:
• The Timestamp field is not transmitted on the ASI output port when looping-through L.3

baseband frames to the ASI output port on the DTA-2137.
• The Timestamp field is not used for DVB-S.2(X) L.3 baseband frame modulation

• In receive-mode DTAPI_RXMODE_STL3, only data frames are added to the stream.
In receive-mode DTAPI_RXMODE_STL3FULL, data and dummy frames are added. In receive-mode
DTAPI_RXMODE_STL3ALL (DTA-2132 only) data, dummy and error frames are added.

TimeStamp

The timestamp is a 32-bit field that indicates the value of the system reference clock at the
moment the first byte of the baseband frame was received.

L3Sync

Synchronization word: fixed value 0xB8.

DTAPI Manual
Overview and data formats

40

AcmCommand

MODCOD and frame type. The meaning of bits 7..1 depend on bit 0.

AcmCommand bit 0 == 0

Bit 7..3 DVB-S2 MODCOD, see the MODCOD field in the DVB-S2 specification.

Bit 2 FECFRAME size (0 = normal: 64 800 bits; 1 = short: 16 200 bits)

Bit 1 Pilots configuration (0 = no pilots, 1 = pilots)

AcmCommand bit 0 == 1

Bit 7..2 DVB-S2X MODCOD, see the MODCOD field in the DVB-S2X specification. Note
that the PLS-code = DVB-S2X MODCOD * 2 + 128.

Bit 1 Pilots configuration (0 = no pilots, 1 = pilots)

Please note that the receiver firmware (DTA-2137 and DTA-2132) deletes dummy and error
frames (MODCOD=0), unless in receiving mode DTAPI_RXMODE_STL3FULL or
DTAPI_RXMODE_STL3ALL is used.

AcmCommand2

This field is only present for DVB-S2X MODCOD >=0 and < 2 (PLS-code >=128 and PLS-
code <132).
Bit 3..0 Index pointing to the VL-SNR header sequence.
Bit 7..4 Reserved; set to 0

CNI

8-bit Carrier-to-Noise plus interference ratio. The CNI value is updated every 50ms. The reso-
lution is 0.125dB per unit and the range is -1.0…30.75dB. The encoding is shown in the fol-
lowing table:

Value Meaning

0x00 Receiver is not in lock, CNI is not available

0x01 -1.0 dB

0x02 -0.875 dB

... …

0xFE 30.625 dB

0xFF ≥ 30.75 dB

Note that the CNI for received dummy frames is set to zero.

PlFrameId

Modulo-256 frame counter generated by the demodulator. The counter is incremented for each
baseband frame received by the demodulator.
Please note that the PlFrameId increment may not be equal to 1, since dummy and error
frames are deleted by the firmware.

BBHEADER()

The DVB-S2 BBHEADER. Please refer to the DVB-S2 specification for details.
Please note that the BBHEADER for dummy and error frames is set to zero.

DTAPI Manual
Overview and data formats

41

MaType1, MaType2

Describes the input stream format, Mode Adaptation and transmission roll off.

Upl

User-packet length in bits, in the range 0…65535.

Dfl

Data-field length in bits, in the range 0…58112.

Sync

Copy of the user-packet sync byte (e.g. 0x47 for MPEG2 Transport Stream packets)

SyncD

Distance in bits from the beginning of the DATA FIELD and the first UP from this frame (first bit
of the CRC-8).

Crc8

Error detection code applied to the first 9 bytes of the BBHEADER.

PayloadByte

The payload of the baseband frame.

DTAPI Manual
Overview and data formats

42

9.3. SDI – 10-bit Format

In 10-bit SDI format, all 10 bits of the SDI samples are stored. The first sample is the EAV code of the
first line of a frame. The first line of a frame is considered to be the first line in which the Field bit in
the EAV code is ‘0’, indicating the first field: line 1 in 625-line mode or line 4 in 525-line mode. The
first sample of a frame is always stored on a 32-bit boundary. Data stuffing of three bytes is needed
in 525-line video mode, since the number of bytes in such a 10-bit frame is not a multiple of four.

Syntax #bits Mnemonic

sdi_10bit_stream() {

 if (timestamp_flag) {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 }

 do {

 for (line=1; line <= num_lines; line++) {

 sync_code /* ‘1111 1111 11’ */ 10 bsrtlb

 sync_code /* ‘0000 0000 00’ */ 10 bsrtlb

 sync_code /* ‘0000 0000 00’ */ 10 bsrtlb

 eav_code(line) 10 bsrtlb

 for (samp=1; samp<=hsyncs_per_line; samp++)

 sample_data 10 bsrtlb

 sync_code /* ‘1111 1111 11’ */ 10 bsrtlb

 sync_code /* ‘0000 0000 00’ */ 10 bsrtlb

 sync_code /* ‘0000 0000 00’ */ 10 bsrtlb

 sav_code(line) 10 bsrtlb

 for (samp=1; samp<=samps_per_line; samp++)

 sample_data 10 bsrtlb

 }

 if (sdi_std==Mode525) {

 for (i=0; i<3; i++)

 stuffing_byte /* ‘0000 0000’ */ 8 bslbf

 }

 }

}

timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_code

Synchronization byte as defined in the BT-656 specification.

eav_code

End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

sav_code

Start of Active Video code as defined in the BT-656 specification. The line number is encoded in
SAV.

DTAPI Manual
Overview and data formats

43

sample_data

The 10-bit SDI samples.

stuffing_byte

Byte that is produced at the end of a 525-line mode frame only, with the purpose of aligning
the first sample of the next frame to a 32-bit boundary

9.4. SDI – 8-bit Format

In 8-bit SDI format, only the most significant eight bits of each SDI sample are stored. The first sample
is the EAV code of the first line of a frame. The first line of a frame is considered to be the first line in
which the Field bit in the EAV code is ‘0’, indicating the first field: line 1 in 625-line mode or line 4 in
525-line mode. The first sample of a frame is always stored on a 32-bit boundary. No data stuffing
is required since in all modes the number of bytes in an 8-bit frame is divisible by four.

Syntax #bits Mnemonic

sdi_8bit_stream() {

 if (timestamp_flag) {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 }

 do {

 for (line=1; line <= num_lines; line++) {

 sync_code /* ‘1111 1111’ */ 8 bslbf

 sync_code /* ‘0000 0000’ */ 8 bslbf

 sync_code /* ‘0000 0000’ */ 8 bslbf

 eav_code(line) 8 bslbf

 for (samp=1; samp<=hsyncs_per_line; samp++)

 sample_byte 8 bslbf

 sync_code /* ‘1111 1111’ */ 8 bslbf

 sync_code /* ‘0000 0000’ */ 8 bslbf

 sync_code /* ‘0000 0000’ */ 8 bslbf

 sav_code(line) 8 bslbf

 for (samp=1; samp<=samps_per_line; samp++)

 sample_byte 8 bslbf

 }

 }

}

timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_code

Synchronization byte as defined in the BT-656 specification.

eav_code

End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

DTAPI Manual
Overview and data formats

44

sav_code

End of Active Video (EAV) code as defined in the BT-656 specification. The line number is en-
coded in EAV.

sample_byte

The SDI video data with the two least significant bits removed.

9.5. SDI – Huffman-Compressed

Some of DekTec’s SDI devices support a custom Huffman encoding scheme for compressing of SDI
frames. You can detect the support for this feature by using the DTAPI_CAP_HUFFMAN capability flag.
Using the compressed format can be useful to reduce the size of recorded SDI files. The using com-
pression can also be used to reduce PCI or USB bandwidth requirements.

The table below provides the syntax of a compressed SDI frame.

Syntax #bits Mnemonic

sdi_compressed_stream_with_blanking () {

 if (timestamp_flag) {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 }

 do {

 sync_word /* ‘11 1111 1111 1111 1111’ */ 18 bsrtlb

 for (line=1; line <= num_lines; line++) {

 skip_samples(4); /* skip EAV */

 prev_data = blanking_level

 for (samp=1; samp<=hsyncs_per_line; samp++) {

 huffman(sample_data - prev_data) 2-16 bsrtlb

 prev_data = sample_data

 }

 skip_samples(4); /* skip SAV */

 prev_data = blanking_level

 for (samp=1; samp<=samps_per_line; samp++) {

 huffman(sample_data - prev_data) 2-16 bsrtlb

 prev_data = sample_data

 }

 }

 if (alignment()!=32)

 stuffing_data /* ‘0’ */ 2-30 bsrtlb

 }

}

timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_word

Synchronization code consisting of 18 consecutive ‘1’s.

DTAPI Manual
Overview and data formats

45

sample_data

The SDI video data.

prev_data

The previous sample of the SDI video data of the same type (Cb, Y, or Cr) as the current sample.

stuffing_data

Data that is produced at the end of a frame only, with the purpose of aligning the sync_word
of the next frame to a 32-bit boundary

The table below provides the syntax of a compressed frame with only the active video part.

Syntax #bits Mnemonic

sdi_compressed_stream_with_blanking () {

 if (timestamp_flag) {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 }

 do {

 sync_word /* ‘11 1111 1111 1111 1111’ */ 18 bsrtlb

 for (line=1; line <= num_lines; line++) {

 skip_samples(4); /* skip EAV */

 prev_data = blanking_level

 for (samp=1; samp<=hsyncs_per_line; samp++) {

 huffman(sample_data - prev_data) 2-16 bsrtlb

 prev_data = sample_data

 }

 skip_samples(4); /* skip SAV */

 prev_data = blanking_level

 for (samp=1; samp<=samps_per_line; samp++) {

 huffman(sample_data - prev_data) 2-16 bsrtlb

 prev_data = sample_data

 }

 }

 if (alignment()!=32) {

 stuffing_data /* ‘0’ */ 2-30 bsrtlb

 }

 }

}

timestamp

The value of the reference clock at the moment the first SDI sample of the payload enters the
input channel.

sync_word

Synchronization code consisting of 18 consecutive ‘1’s.

sample_data

The SDI video data.

DTAPI Manual
Overview and data formats

46

prev_data

The previous sample of the SDI video data of the same type (Cb, Y, or Cr) as the current sample.

stuffing_data

Data that is produced at the end of a frame only, with the purpose of aligning the sync_word
of the next frame to a 32-bit boundary

See DTAPI Reference – Core Classes function DtSdi::ConvertFrame for conversion between the
compressed Huffman format and one of the uncompressed SDI formats.

9.6. Transparent Mode

Transparent mode adds an extra packetization layer to combine a TS-packet-oriented mode and raw
mode. If the input data contains valid TS packets, each “transparent packet” contains exactly one TS
packet, an optional time stamp and the in-sync flag is set. If the input data is out of sync, the trans-
parent packet contains the raw input data and the in-sync flag is cleared.

Transparent mode is selected by setting the receive mode to DTAPI_RXMODE_STTRP. Transport-stream
monitoring applications can use this mode to receive time-stamped packets for jitter analysis, while
sync errors can still be detected.

Syntax #bits Mnemonic

transparent_packet() {

 if (timestamp_flag) {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 }

 for (i=0; i<204; i++)

 payload_byte 8 bslbf

 sync_nibble /* ‘0101’ */ 4 bslbf

 packet_sync 1 bslbf

 reserved 3 bslbf

 valid_count 8 uimsbf

 sequence_count[7..0] 8 uimsbf

 sequence_count[15..8] 8 uimsbf

}

timestamp

The value of the reference clock at the moment the first byte of the data is received.

payload_byte

Payload of the transparent packet containing the received data, which is either a TS packet or
raw data. The number of valid bytes in the payload is indicated by the valid_count field.
When packet_sync is ‘1’ the first payload byte will usually be 47h, but not necessarily! This is
because an incidental error in the sync byte will not cause loss of synchronization.

sync_nibble

The sync_nibble is a fixed 4-bit field whose value is ‘0101’ (5). Applications can use this
nibble to synchronize to transparent packets.

packet_sync

When set to ‘1’ this flag indicates that synchronization to TS packets has been achieved.

DTAPI Manual
Overview and data formats

47

reserved

These bits are reserved for future use.

valid_count

This field indicates the number of valid bytes in the payload of the transparent packet. If the
packet_sync flag is set this field will be either 188 or 204. If the packet_sync flag is not set
the value can be anything between 1 and 204.
If the number of valid bytes is less than 204, then the value of the remaining payload bytes is
undefined.

sequence_count

The sequence_count is a 16-bit field that contains the original sequence number of the packet
in the Transport Stream. The value of the sequence counter is only meaningful if packet_sync
is ‘1’. Without PID filtering, sequence_count will be incremented by 1 for each received packet.
When PID filtering is used, sequence_count can be used to determine the number of packets
that has been skipped.

9.7. Transmit on Timestamp

The transmit-on-timestamp mode is used to transmit transport packets at user-defined timestamps.
Details of the transmit-on-timestamp mode are described in DTAPI Reference – Core Classes.

Syntax #bits Mnemonic

txontime_stream() {

 do {

 timestamp[7..0] 8 uimsbf

 timestamp[15..8] 8 uimsbf

 timestamp[23..16] 8 uimsbf

 timestamp[31..24] 8 uimsbf

 if (TxMode == 188 || TxMode == Add16)

 for (i=0; i<188; i++)

 tp_byte 8 bslbf

 if (TxMode == 204 || TxMode == Min16)

 for (i=0; i<204; i++)

 tp_byte 8 bslbf

 }

}

timestamp

Relative time at which to transmit the packet. The timestamp is encoded in four bytes in little-
endian format.

tp_byte

Byte in a transport packet.

	1. General Description
	1.1. What is DTAPI?
	1.2. Documentation Overview
	1.3. DTAPI Object Model
	1.4. List of Abbreviations and Glossary of Terms
	1.5. References

	2. Using DTAPI in your Project
	2.1. DTAPI on the Windows Platform
	2.2. Using the Static Link Library
	2.3. Using the .NET Assembly
	2.4. DTAPI on the Linux Platform

	3. DTAPI Basics
	3.1. Attaching to a Device
	3.2. Attaching to a Channel
	3.3. Initialising a Channel
	3.4. Receiving Data
	3.5. Transmitting Data
	3.6. Example Code for a Simple Stream Player

	4. Capabilities and I/O Configuration
	4.1. Introduction
	4.2. Capabilities
	4.2.1. I/O Capability Groups
	4.2.2. Standard Capability Groups

	4.3. I/O Configuration
	4.3.1. SetIoConfig and GetIoConfig
	4.3.2. Relation to Capabilities
	4.3.3. SetIoConfig Variants

	5. DTAPI Concepts
	5.1. Getting Statistics
	5.2. Transmit on Timestamp
	5.3. SDI Genlock Support
	5.4. Vital Product Data (VPD)

	6. Multi-PLP Extensions
	6.1. Licensing
	6.2. Multi-PLP Object Model
	6.3. Attaching to a Multi-PLP Modulator
	6.4. Virtual Channels
	6.5. Streaming MPLP Data
	6.6. Complete Example

	7. Advanced Demodulator API
	7.1. Introduction
	7.2. Streaming Model
	7.3. Licensing
	7.4. Advanced Demodulator Object Model
	7.5. Attaching to an Advanced Demodulator
	7.6. Virtual Input Channel – User-Supplied I/Q Samples
	7.7. Receiving PLP Data and Constellation points
	7.8. Retrieving Statistics
	7.9. Set Generic Demodulation Parameters

	8. SDI over IP
	8.1. Overview
	8.2. Using SDI-over-IP with DTAPI
	8.3. SDI Transmit
	8.4. SDI Receive

	9. Definition of data formats
	9.1. Generic Stream Encapsulation (GSE) Packet
	9.2. L.3 Baseband Frame
	9.3. SDI – 10-bit Format
	9.4. SDI – 8-bit Format
	9.5. SDI – Huffman-Compressed
	9.6. Transparent Mode
	9.7. Transmit on Timestamp

